Segregating Data on the Flower Colour of *Pharbitis Nil*. # Yoshitaka IMAI. (Received July 5, 1930) # CONTENTS. | | | Page | |------|-------------------|------| | L | ntroduction | 61 | | I. | White Flowers | 62 | | | White-1 | 62 | | | White-2 | 62 | | | White-3 | 66 | | II. | Flower Hues | 67 | | | Purple | 67 | | | Magenta | 68 | | | Dusky | 71 | | | Duskish | 73 | | III. | Flower Tones | 74 | | | Intense | 74 | | | Light-1 | 75 | | | Light-2 | 76 | | | Dilute and tinged | 77 | | IV. | Flower Patterns | 78 | | | Speckled | 78 | | | Speckled-reduced | 80 | | | Faded | 83 | | | Smeary | 84 | | | Rayed | 86 | | | Flecked | 89 | | | Lined | 90 | | - | Striated | 91 | | | Blizzard-1 | 91 | ## Introduction. This paper includes experimental data on the genetics of the general flower colour of *Pharbitis Nil*, and is intended to publish as supplementary to the writer's paper "The Property of the Genes Affecting the Flower Colour of *Pharbitis Nil*", which, being now in press, will soon appear in Journal of Genetics. The description of characters and the quotation from literature are given there. # · I. White Flower. # WHITE-1. On crossing white-1 with normal (coloured), the resultant F_1 hybrids, without exceptions, are normal. From such plants, the writer bred F_2 segregating as shown in Table 1. $\begin{tabular}{ll} Table & 1. \\ \end{tabular}$ F2 from the cross between white-1 and normal. | Cross | + | w1 | Total | |--------------------------|------|-----|-------| | 3×324 | 64 | 20 | 84 | | $\mathrm{SK} \times 445$ | 77 | 23 | 100 | | $SK \times 440b$ | 72 | 17 | 89 | | 471×450 | 46 | 21 | 67 | | $SE \times E7$ | 93 | 29 | 122 | | $50 \times 71-2$ | 525 | 184 | 709 | | $\mathrm{SK} \times 450$ | 96 | 19 | 115 | | 470×426 | 108 | 41 | 149 | | 470×450 | 110 | 34 | 144 | | 3×50 | 385 | 130 | 515 | | $3 \times N$ | 218 | 72 | 290 | | 324×712 | 333 | 106 | 439 | | Total | 2127 | 696 | 2823 | The segregation is in a 3:1 ratio of normal and white-1. In Table 2, an F_3 examination is given by summarizing the data. $\begin{tabular}{ll} Table & 2. \end{tabular}$ F_a of cross $3\times 50,$ showing segregation of white-1. | *************************************** | | | | | |---|--------------|------------|-----|------------| | F ₂ parent | No. families | + | w1 | Total | | Normal | 13
27 | 366
646 | 212 | 366
858 | | White-1 | 12 | | 411 | 411 | The F_3 results prove the simple recessiveness of white-1 to normal. # White-2. Owing to the recessive nature of white-2, the F₁ hybrids between white-2 and normal are normal. On selfing the hybrids thus obtained, the writer bred F_2 as shown by the data in Table 3. | Cross | + | w2 | Total | |-------------------|------|-----|-------| | 322×318 | 45 | 16 | 61 | | 323×318 | 81. | 32 | 103 | | 455×480 | 102 | 37 | 139 | | 460×481 | 75 | 49 | 124 | | 74-2 × WO | 79 | 25 | 104 | | $450 \times 74-2$ | 70 | 26 | 96 | | 420×34 | 240 | 85 | 325 | | 450×45 | 124 | 48 | 172 | | 415×78 | 173 | 57 | 230 | | 316×410 | 44 | 19 | 63 | | 316 × BK | 198 | 67 | 265 | | \$22 × 50. | 452 | 149 | 601 | | $M3 \times NN$ | 139 | 44 | 183 | | Total | 1822 | 644 | 2466 | The simplicity of white-2 in relation to normal is proved by F₃ data, which are collected in Table 4. $Table \quad 4.$ $F_{a} \ \text{of cross } 322 \times 50 \text{, showing segregation of white-2}.$ | F ₂ parent | No. families | + | w2 | Total | |-----------------------|--------------|-----|-----|-------| | Normal | 4 | 203 | | 203 | | | 7 | 338 | 110 | 448 | | White-2 | 3 | | 121 | 121 | The dominant allelomorphs of white-1 and white-2 being complementary in the production of anthocyanin pigment in the corolla, the F_1 hybrids between white-1 and white-2 bear reversional normal flowers. Such hybrids gave F_2 as shown in Table 5. The proportion of the three types, normal, white-1 and white-2, is nearly 9:3:4, indicating a dihybrid segregation. As regards the flower colour, the result is of a 9:7 ratio of normal and white. In Table 6 are shown F_3 data obtained by one of crosses shown in the previous table. Table 5. $F_2 \ {\rm from \ the \ cross \ between \ white-1 \ and \ white-2, \ showing \ u \ 9:3:4 \ ratio. }$ | Cross | + | w1 | w2 | Total | |------------------|------|-----|-----|-------| | 3×319 | 30 | 10 | 12 | 52 | | D×319 | 377 | 123 | 166 | 666 | | 3×365 | 191 | 69 | 88 | 348 | | $297 \times E7$ | 82 | 22 | 33 | 137 | | 3×316 | 267 | 91 | 125 | 483 | | 170×319 | 208 | 67 | 83 | 358 | | Total | 1155 | 352 | 507 | 2014 | Table 6. $F_{3} \ \mbox{of cross D} \times 319, \ \mbox{showing segregation of white-1 and white-2}.$ | F ₂ parent | No. families | + | w1 | w2 | Total | |-----------------------|--------------|-----|-----|-------|-------| | | . 4 | 110 | | | 110 | | Normal | 8 | 188 | 61 | | 249 | | Normai | 7 | 254 | | 85 | . 339 | | | 19 | 361 | 120 | 152 | 633 | | 3773.24 - 7 | 4 | | 98 | ***** | 98 | | White-1 | 8 | | 189 | 60 | 249 | | White-2 | 13 | | | 302 | 302 | White-1 may be concealed by white-2, therefore some white-2 offspring will be double recessive for white-1 and white-2. The white-2 F₃ segregated in the white-1 families invariably should be w1 w2. When white-2 of white tube is used as a partner of white-1 in hybridization, the white-2 segregates in the later generations have white tubes. This was the case, for instance, in the cross shown by the data in Table 6. However, when white-2 of coloured tube is crossed with white-1, the white-2 segregates have invariably coloured tubes, if there is no segregation for some tube-pattern genes such as tube-white or half-white. Sometimes nearly white tubes are found in white flowers, but this may be due to the influence of certain flower colour genes, which dilute also the colour of tubes. In such cases, the demarcation of the tube colour is difficult, and erroneously may be recorded as white tubes. The double recessive white form, that is w1 w2, has always a white tube. Therefore, when white-2 of coloured tube is crossed with white-1, and there is no extreme dilution of tube colour in the white-2 F₂ segregates, we should obtain a phenotypic distribution of 9 normal: 3 white-1: 3 white-2: 1 white-1 white-2 in proportion. In Table 7 are shown such F_2 obtained. ${\it Table } \quad {\it 7.}$ ${\it F}_{\it 2} \ {\it from the cross between white-1 and white-2, showing a 9:3:3:1 ratio.}$ | Cross | + | w1 | w2 | w1 w2 | Total | |----------------|------------|------------|----------|----------|------------| | 3×323
322×D | 239
185 | . 78
63 | 85
61 | 27
20 | 429
329 | | Total | 424 | 141 | 146 | 47 | 758 | The theory proposed above is proved by an F_3 examination, which is found by the data in Table 8. $\label{eq:Table-8} Table \quad 8.$ E_3 of cross $3\times 323,$ showing segregation of white-1 and white-2. | F ₂ parent | No. families | + | w1 | w2 | w1 w2 | Total | |-----------------------|--------------|-----|-----|--------|-------|-------| | Normal | 8 | 76 | | | | 76 | | | 11. | 126 | 45 | | | 171 | | | 18 | 259 | | 86 | | 345 | | | 26 | 338 | 95 | 111 | 33 | 577 | | Wbite-1 | 5 | | 112 | | | 112 | | | 14 | | 164 | | 60 | 224 | | White-2 | 8 | | ••• | 99 | | 99 | | W Hite-2 | 14 | | | 205 | 80 | 285 | | White-1 white-2 | 6 | | | ****** | 51 | 51 | The white-2 type when intercrossed usually gives white-2 flowers as F_1 , but sometimes it results in coloured flowers. In Table 9 are shown F_2 from such coloured F_1 . ${\bf Table} \quad {\bf 9}.$ ${\bf F}_2 \ {\bf of} \ {\bf coloured} \ {\bf F}_1 \ {\bf from} \ {\bf the} \ {\bf cross} \ {\bf between} \ {\bf two} \ {\bf white} \ {\bf flowers} \ {\bf with} \ {\bf green} \ {\bf stems}.$ | Cross | + | W | Total | |------------------|-----|-----|-------| | 316×319 | 177 | 124 | 301 | | 316×100 | 231 | 190 | 421 | | Total | 408 | 314 | 722 | The results indicate that two complemental genes are working therein. This fact shows further complication of the genotype of the so-called white-2 flowers. Therefore the genetics of the white-2 character must be investigated further. # White-3. The white-3 character is also recessive to normal, and is segregated one-fourth in F_2 as shown in Table 10. ${\bf Table} \quad {\bf 10}.$ ${\bf F_2}$ from the cross between white-3 and normal. | Cross | + | w3 | Total | |-----------------|------|-----|-------| | 500×65 | 705 | 247 | 953 | | 50×500 | 389 | 130 | 519 | | $500 \times N$ | 455 | 154 | 609 | | Total | 1550 | 531 | 2081 | In Table 11 are shown the F_3 results obtained by one of these crosses. $\label{eq:Table_11} Table \quad 11.$ F_{a} of cross 50×500, showing segregation of white-3. | F ₂ parent | No. families | + | w3 | Total | |-----------------------|--------------|-----|-----|-------| | Normal | 15 | 258 | | 258 | | Normal | 28 | 818 | 270 | 1088 | | White-3 | 10 | , | 115 | 115 | Therefore the gene white-3 results in a thorough white flower; that is, a green-stemmed white flower with white tube and white seed. When white-3 is crossed with white-2, F_1 is normal, and a dihybrid segregation ensues in F_2 . Actual data are shown in Table 12. $\begin{tabular}{ll} Table & 12. \end{tabular}$ F2 from the cross between white-1 and white-3. | Cross | , | | w3 | Total | |-----------|-----|----|-----|-------| | 500 × 170 | 167 | 57 | 75 | 299 | | 500 × D | 96 | 32 | 42 | 170 | | Total | 263 | 89 | 117 | 469 | The result is 9 normal: 3 white-1: 4 white-3 in proportion. White-1 has no effect on the white-3 component in appearance. When white-3 was crossed with white-2, F_1 obtained bore normal flowers; and in F_2 , segregation occurred as to normal, white-2 and white-3, the data being shown in Table 13. $\label{eq:Table 13} Table \quad 13.$ F_2 from the cross between white-2 and white-3. | | | | | 1 | |------------------|-----|----|----
-------| | Cross | + | w2 | w3 | Total | | 316×460 | 93 | 33 | 29 | 155 | | 460×415 | 83 | 39 | 39 | 161 | | Total | 176 | 72 | 68 | 316 | White-2 is concealed in white-3, therefore the F_1 hybrids between them should give a 9:3:4 ratio as to the segregating F_2 forms. In some crosses, the genetics of the white flowers were found to be more complicated than the cases described above; the presentation of these data will be made in the future. ## II. Flower Hues. #### PURPLE. The F_1 hybrids between purple and normal (blue) bear normal flowers, apparently the same as pure normals. In F_2 , segregation occurs in a simple fashion, the data being collected in Table 14. ${\rm Table} \quad {\rm 14}.$ ${\rm F}_2$ from the cross between purple and normal. | Cross | + | pr | Total | |----------------|-------|---------------------|-------| | $26 \times PF$ | 225 | 77 | 302 | | $N \times PF$ | . 120 | 37 | 157 | | P×26 | 361 | 121 | 485 | | 219 × N | 168 | 54 | 222 | | Total | 877 | 289 | 1166 | In F_3 the expectation was fulfilled as shown by the data in Table 15. Table 15. F₃ of cross 26 x PF, showing segregation of purple. | F ₂ parent | No. families | -4- | pr | Total | |-----------------------|--------------|-----|-----|-------| | Normal | 11. | 545 | | 545 | | | 24 | 887 | 293 | 1180 | | Purple | 8 | | 322 | 322 | Therefore, the behaviour of the gene purple is so simple in inheritance that it does not need any further comment. #### MAGENTA. In hybridization of magenta with normal, the F₁ plants bear normal flowers; and in the subsequent generation, a simple segregation occurs, the data being presented in Table 16. Table 16. \mathbf{F}_2 from the cross between magenta and normal. | Cross | + | mg | Total | | |---------------|------|-----|-------|--| | H15 × N | 187 | 73 | 260 | | | $N \times M$ | 550 | 180 | 730 | | | $M \times 26$ | 327 | 111 | 438 | | | Total | 1064 | 364 | 1428 | | The F₃ data did not give any notable facts beyond expectation, the results proving the simple recessiveness of magenta to normal, as shown by the data in Table 17. Table 17. F_3 of cross $H15 \times N$, showing segregation of magenta. | F ₂ parent | No. families | + | mg | Total | |-----------------------|--------------|-----|-----|-------| | Normal | 9 | 366 | ••• | 366 | | | 17 | 542 | 180 | 722 | | Magenta | 8 | | 235 | 235 | With the experiments above shown, both flower colours, purple and magenta, are proved to be recessive to normal. Therefore, when purple is crossed with magenta we have F₁ bearing normal flowers, by the meeting of the two dominant allelomorphs of purple and magenta. Experimentally this was proved by obtaining normal F₁ from both reciprocal crossings of purple and magenta, and in F₂ a dihybrid segregation occurred as indicated by the data in Table 18. $\label{eq:Table 18} Table \quad 18.$ F_2 from the cross between purple and magenta. | Cross | + | pr | mg | pr mg | 'Total | |----------------------------------|-----------|-----------|-----------|----------|------------| | $PF \times M4$ $WII \times H180$ | 466
94 | 157
32 | 160
29 | 50
10 | 833
165 | | Total | 560 | 189 | 189 | 60 | 998 | The double recessive is "red" in colour. The "red" flower being genetically purple magenta, such a dihybrid segregation will also be obtained in F_2 when "red" is crossed with normal. Table 19 contains the F_2 data thus obtained. Table 19. F₂ from the cross between purple magenta and normal. | Cross | + ` | pr | mg | pr mg | Total | |-------------------------|-----|----|----|-------|-------| | $26 \times \mathrm{UN}$ | 244 | 96 | 67 | 28 | 435 | An F_3 examination of this cross was made and the data obtained are shown in Table 20. | | · · · · · · · · · · · · · · · · · · · | | | 1 1 | | | |-----------------------|---------------------------------------|---|-------|-------|-------|-------| | F ₂ parent | No. families | + | l.t. | mg | pr mg | Total | | | 3, | 50 | | | | 50 | | Normal | 11 | 296 | 119 | | | 415 | | | 9 | 264 | ***** | 71 | | 335 | | 4 | 26 | 532 | 187 | 168 | 47 | 934 | | Purple | 7 | | 183 | | | 183 | | rarps: | 8 | • | 277 | • | 75 | 352 | | Magenta | 4 | | | 117 | | 117 | | magener | 4 | | | 37 | 15 | 52 | | Purple magenta | 1 | | | ••••• | 44 | 44 | The results did not give any new facts beyond expectation. As purple magenta differs in one gene to purple, we should expect purple F_1 and a segregation of 3 purple: 1 purple magenta in F_2 , when it was crossed with purple. The F_2 frequency thus obtained is indicated in Table 21. Table 21. | F ₂ from t | he cross between | purple magenta | and purple. | |-----------------------|------------------|----------------|-------------| | Cross | pr | pr mg | Total | | 1180 × 50
× D15 | 175
75 | 60
24 | 235
99 | | Total | 250 | 84 | 334 | The monogenic segregation will also be obtained when purple magenta is crossed with magenta, as shown in Table 22. | Cross | mg | pr mg | Total | |--------------------------|-----|-------|-------| | 50 × M4 | 384 | 131 | 515 | | $455 \times \mathrm{BK}$ | 141 | 41 | 182 | | Total | 525 | 172 | 697 | By these experiments we understand definitely that the "red" flowers are genetically purple magenta; or, in other words, purple and magenta give a unique flower colour by their combination. In hybridization of purple magenta with white-1, F_1 obtained was normal; and in F_2 , segregation occurred as shown in Table 23. Table 23. F₂ from the cross between purple magenta and white-1. | Cross | + | pr | mg | pr mg | w1 | Total | |------------------|-----|-----|------|-------|-----|-------| | $50 \times 71-2$ | 293 | 102 | - 96 | 34 | 184 | 709 | Therefore, the white-1 parent used in this crossing must be double dominant for purple and magenta, and contributed them to the F_1 zygotes in hybridization, resulting in normal blue flowers. The similar F₂, with an additional segregation of white-2, was observed as shown by the data in Table 24. Table 24. | $\mathbf{F_2}$ | from | $_{ m the}$ | \mathbf{cross} | between | white-1 | and | white-2. | |----------------|------|-------------|------------------|---------|---------|-----|----------| |----------------|------|-------------|------------------|---------|---------|-----|----------| | Cross | + | Į:r | mg | pr mg | w1 | w2 | Total | |-------|-----|-----|----|-------|----|----|-------| | 3×365 | 100 | 40 | 38 | 13 | 69 | 88 | 348 | The constitution of the white-1 parent (No. 3) is known to contain w1 W2 Pr Mg by the other crossing experiments, therefore that of its partner, white-2 (No. 365), should be W1 w2 pr mg. # Dusky. Crossing dusky with normal gives normal F_1 flowers; and in F_2 , segregation occurs into normal and dusky in a simple ratio, as shown by the data in Table 25. Table 25. | \mathbf{F}_2 | from | the | cross | between | dusky | and | normal. | |----------------|------|-----|-------|---------|-------|-----|---------| | Cross | + | dy | Total | |----------|-----|-----|-------| | K15 × N | 112 | 37 | 149 | | N8 × K15 | 370 | 121 | 491 | | Total | 482 | 158 | 640 | The record of an F₃ examination is collected in Table 26. Table 26. $\rm F_{3}$ cf cross N8 \times K15, showing segregation of dusky. | F ₂ parent | No. families | + | dy | Total | |-----------------------|--------------|-----|----------|------------| | Normal | , 6 | 111 | | 111
241 | | Dusky | 10 | 183 | 58
55 | 55 | The results above shown came up to our expectation, therefore we need not comment any further in this connection. In Table 27 is shown an ${\rm F_2}$ of the normal hybrids obtained by crossing magenta dusky with white-1, showing segregation of magenta, dusky and white-1. Table 27. F₂ from the cross between magenta dusky and white-1. | Cross | + | mg | dy | mg dy | w1 | Total | |-------------------|-----|----|----|-------|-----|-------| | $324 \times 71-2$ | 194 | 61 | 58 | 20 | 106 | 439 | The F_3 was examined, and the resultant data are shown collectively in Table 28. $Table \quad 28.$ $F_{3} \ \mbox{of cross} \ 324 \times 71\text{--}2, \ \mbox{showing segregation of magenta},$ dusky and white-1. | 1 | | | | | | | | |-----------------------|--------------|------------------|-------|---|-------|--------------------------------|-------| | F ₂ parent | No. families | + | mg | dy | mg dy | w1 | Total | | | 2 | 22 | | | | 4 | 26 | | | 7 | 135 | 50 | | | | 185 | | Normal | 2 | 21 | 9 | | | 10 | 40 | | | 3 | 56 | | 12 | | ,, | 68 | | | 1, | 5 | | 1 | | 2 | 8 | | | 2 | -18 | 10 | 11 | 1 | | 40 | | | 5 | 5 93 29 34 10 56 | 56 | 222 | | | | | | 1 | | . 33 | •••• | | | 33 | | Magenta | 1 | | 29 | | | 4. | 33 | | magenta. | 3 | | 63 | | 24 | | 87 | | | 1. | | 7 | | 1 | 4

10

2

56 | 9 | | Dusky | 2 | ****** | ***** | 40 | 12 | ***** | 52 | | Dusky | 4: | | | 114 | 36 | 45 | 195 | | Magenta dusky | 1 | | | | 6 | | 6 | | magenta dusky | 2 | ••••• | ••••• | | 61 | 25 | 86 | | White-1 | 10 | | | • | | 301 | 301 | The results of Table 28 show that the trihybrid expectation covers perfectly the data obtained. In Table 29 is shown an F_2 segregating purple, magenta and dusky. Table 29. F₂ from the cross between dusky and purple magenta. | Cress | + | \mathbf{pr} | mg | pr mg | dy | pr dy | mg dy | pr mg dy | Total | |-----------------|-----|---------------|----|-------|----|-------|-------|----------|-------| | $K15 \times 50$ | 142 | 48 | 47 | 15 | 43 | 16 | 14 | 4 | 329 | Owing to the free assortment of the three genes, the segregating forms appeared in accordance with a normal trihybrid ratio. #### Duskish. The F_1 hybrids between duskish and normal bear normal flowers, and segregation occurs into 3 normal: 1 duskish in F_2 , as shown by the data in Table 30. Table 30. F2 from the cross between duskish and normal. | Cross | 1 | dk | Total
| |-----------------------------------|-----|-----|-------| | $428\mathrm{b} \times \mathrm{N}$ | 360 | 115 | 475 | | 26×428b | 275 | 88 | 363 | | Total | 635 | 203 | 838 | Therefore, duskish is a simple recessive to normal. One cross made between two strains (No. 316 and No. 100) having the white-2 character gave normal F_1 as mentioned before; and in F_2 , segregation occurred in a wide range of colour intensity. On account of the fact that the segregates contained some which were very faintly coloured, the distinction of the minor variations in the flower colour was much confused. So the data are collected into three major classes, normal, duskish and white, as shown in Table 31. Table 31. F₂ from the cross between two whites, segregating duskish. | | 1 | | | | |------------------|-----|----|-----|-------| | Cross | + | dk | w | Total | | 316×100 | 171 | 60 | 190 | 421 | Owing to the occurrence of very faintly coloured flowers, duskish was sometimes apparently white. In such cases the writer made observations on the colour of the corolla by opening full-grown buds, in which process the least amount of the colour is greatly exaggerated. In Table 32 are shown F_2 obtained by the cross between purple magenta duskish and white-1. $\label{eq:Table 32.} Table \quad 32.$ F_2 from the cross between purple magenta duskish and white-1. | Cross | pr | pr·mg | - | pr mg dk | w1 | Total | |-------------------------------|-----------|----------|----------|----------|----------|------------| | 470×426
1-1 × 426 | 62
130 | 24
43 | 19
40 | 3
15 | 41
73 | 149
301 | | Total | 192 | 67 | 59 | 18 | 114 | 450 | Because of the fact that duskish is not all elomorphic to dusky, F_1 flowers obtained by the cross between dusky and duskish are normal, reverted by the meeting of their two complemental dominant genes. In Table 33 is shown such a case by the actual data, in which, however, purple was contained commonly by both parents, therefore the F_1 flowers were purple in colour. Table 33. F₂ from the cross between purple dusky and purple magenta duskish. | Cross | pr | pr mg | pr dy | pr mg dy | pr dk . | pr mg dk | Total | |--------------------------|----|-------|-------|----------|---------|----------|-------| | $430\times425\mathrm{b}$ | 84 | 32 | 30 | 11 | 29 | 13 | 199 | In this cross the segregating genes are magenta, dusky and duskish. Owing to the hypostatic nature of dusky to duskish, the segregating proportion should be 27 purple: 9 purple magenta: 9 purple dusky: 12 purple duskish: 3 purple magenta dusky: 4 purple magenta duskish. The observed numbers, however, show much deficit in the frequency of duskish classes. This dificit relates to the mutating nature of duskish, because the duskish parent used in this cross was a "ruled" variant. #### III. Flower Tones. ## Intense. Intense behaves as recessive to normal. In F2 of normal F1 obtained ¹⁾ The method is also useful for faded when the colour is faint. by the cross between intense and normal, segregation occurred into 3 normal to 1 intense as shown in Table 34. | Cross | + | i | Total | |-----------------|-----|------|-------| | $RF \times BK$ | 85 | - 33 | 118 | | $B \times F6$ | 146 | 53 | 199 | | $475 \times F6$ | 70 | 19 | 89 | | Total | 301 | 105 | 406 | Table 35 contains F_2 data obtained by the hybridization of intense and magenta. $Table \quad 35.$ $F_2 \ \text{from the cross between intense and magenta.}$ | Cross | + | mg | i | mg i | Total | |--------------------------|-----|-----|-----|------|-------| | B× BK | 206 | 77 | 66 | 22 | 371 | | ID×BK | 81 | 27 | 29 | 7 | 144 | | $475 \times \mathrm{BK}$ | 83 | 17 | 19 | 6 | 125 | | Total | 370 | 121 | 114 | 35 | 640 | The segregation is related to the genes, magenta and intense. With these crossing experiments the simple recessive nature of intense to normal is well elucidated. # Light-1. Two light flowers are found, differing genetically but giving a similar tone; one of them, light-1, is rather closely linked with yellow and dusky, but the other, light-2, is transmitted independently to dusky. In Table 36 is indicated the linked segregation of light-1 and dusky. ${\bf Table \quad 36.}$ ${\bf F_2}$ from the cross between magenta light-1 and magenta dusky. | Cross | mg i | mg lt1 | dy i | dy lt1 | Total | |------------------|------|--------|------|--------|-------| | 422×435 | 94 | 34 | 45 | 0 | 173 | Therefore, light-1 acts as a recessive to intense. The similar data are collected in Table 37, in which, however, an additional segregation for purple occurred. Table 37. | $\mathbf{F_2}$ | from | the | cross | between | light-1 | and | purple | dusky | in tense. | |----------------|------|-----|-------|---------|---------|-----|--------|-------|-----------| | Cross | 1 | ItI | ay 1 | ay Itt | pr 1 | pritt | pr ay 1 | pr dy Iti | Total | |----------------|----|-----|------|--------|------|-------|---------|-----------|-------| | 421×430 | 70 | 24 | 34 | υ | 22 | 8 | 11 | 0 | 169 | | | | | | | | | | | | These results show close linkage between dusky and light-1. # Light-2. Light-2 is the other diluting gene for intense. In Table 38 are shown F₂ obtained by crossing light-2 with intense. Table 38. F₂ from the cross between light-2 and intense. | Cross | i | · lt2 | Total | |--------------------------|------|-------|-------| | $220 imes ext{A}$ | 264 | 86 | 350 | | $\mathrm{UN} \times 220$ | 217 | 71 | 288 | | Total | 481. | 157 | 638 | Table 39 contains another cross, showing dihybrid segregation for magenta and light-2. Table 39. F₂ from the cross between purple intense and purple magenta light-2. | Cross | pr i | pr lt2 | pr mg i | pr mg lt2 | Total | |-----------------|------|--------|---------|-----------|-------| | 65×220 | 199 | 79 | 76 | 16 | 370 | The light-2 parents in the crosses shown in Tables 38 and 39 are considered to be light-2 intense as to the genes affecting the flower tone. Therefore, we had monohybrid segregation for the intensity of the flower colour. In Table 40 is shown an independent segregation of light-2 to dusky. Table 40. ${\bf F}_2$ from the cross between purple magenta dusky intense and purple magenta light-2. | | The state of s | | | | | |------------------|--|-----------|------------|--------------|-------| | Cross | pr mg i | pr mg lt2 | pr mg dy i | pr mg dy lt2 | Total | | 324×220 | 375 | 126 | 123 | 42 | 666 | The free assortment of light-2 to dusky gives a decided proof for the occurrence of another recessive light gene, besides light-1, which is strongly linked with dusky. # DILUTE AND TINGED. On account of close linkage of white-2 with Dilute, the hybridization of white-2 plants results in Dilute flowers among its F_2 segregates. In Table 41 is presented an F_2 making segregation of Dilute. Table 41. \mathbf{F}_2 from the cross between white-2 and normal, segregating Dilute and tinged. | Cross | + | D | tg | w2 | Total | |-----------|----|----|----|----|-------| | 455 × 480 | 21 | 52 | 29 | 37 | 139 | In this case another segregation for tinged occurred. The respective parental genotypes are D tg w2 for white-2, and + or d Tg W2 for its partner. Owing to close linkage between Dilute and white-2, the segregating ratio of normal, Dilute and tinged was nearly 1:2:1. In Table 42 is shown a similar F_2 , with an additional segregation of white-3. Table 42. ${ m F_2}$ from the cross between white-2 and white-3, segregatm Dilute and tinged. | Cross | + | D | tg | w2 | w3 | Total | |---------|----|----|----|----|----|-------| | 460×481 | 21 | 38 | 16 | 23 | 26 | 124 | The close linkage between Dilute and white-2 was also the case, and gave a segregating ratio of high repulsion in the distribution of the coloured and white-2 flowers. ## IV. Flower Patterns. ## Speckled. Speckled acts as a recessive character to normal, and is segregated in one-fourth of F₂, the data observed being
collected in Table 43. Table 43. F₂ from the cross between speckled and normal. | Cross | + | sp | Total | |-----------------|-----|-----|-------| | $350 \times N$ | 255 | 86 | 341 | | 350×26 | 211 | 70 | 281 | | Total | 466 | 156 | 622 | An F_3 examination was recorded by cross 350×26 , the data obtained being presented in Table 44. Table 44. F_3 of cross $350 \times 26,$ showing segregation of speckled. | F ₂ parent | No. families | + | $_{ m sp}$ | Total | |-----------------------|--------------|------------|------------|------------| | Normal | 8
13 | 155
398 | 128 | 155
526 | | Speckled | 6 | ***** | 89 | 89 | In Table 45 are shown F₂ data, containing segregation of speckled, with additional assortments of magenta and white-1. Table 45. F2 from the cross between white-1 and magenta speckled. | Cross | + | mg | sp | mg sp | w1 | Total | |-----------------|----|----|----|-------|----|-------| | $SK \times 445$ | 35 | 16 | 24 | 2 | 23 | 100 | The surplus of speckled is due to close linkage between white-1 and speckled. In Table 46 is indicated an F₂, in which segregation occurred as to speckled and purple. Table 46. F₂ from the cross between magenta and purple magenta speckled. | Cross | mg | mg sp | pr mg | pr mg sp | Total | |------------------|----|-------|-------|----------|-------| | 187×921 | 67 | 23 | 20 | 7 | 117 | Table 47 contains the results from another cross showing segregation of duskish and speckled. Table 47. F₂ from the cross between purple magenta duskish and purple magenta speckled. | Cross | pr mg | pr mg sp | pr mg dk | pr mg dk sp | Total | |----------------|-------|----------|----------|-------------|-------| | 189×921 | 164 | 64 | 54 | 12 | 294 | With the results above presented, the simple recessive nature of speckled is clear. The common white-2 flowers carry no speckled gene, therefore the tube colour, if present, is distributed uniformly; that is, not speckled. Whereas, if it carries the gene speckled, we may have a white flower with speckled tube, which is genotypically w2 sp. In hybridization of white-2 with coloured tube by speckled with speckled tube, F_1 obtained was normal; and in F_2 , segregation occurred as shown in Table 48, in which white flowers with speckled tubes appeared. Table 48. ${f F}_2$ from the cross between white-2 and speckled, segregating white-2 speckled. | Cross | + | sp | w2 | w2 sp | Total | |------------------|----|----|----|-------|-------| | 350×323 | 94 | 22 | 38 | 6 | 160 | Although the deficit of speckled segregates is remarkable, the data show a dihybrid distribution. The double recessive form, that is w2 sp, is a white flower with speckled tube, as the white parent was of coloured tube. In Table 49 are shown the F_3 results obtained. $\begin{tabular}{ll} Table & 49. \\ F_3 of cross 350×323, showing segregation of white-2 speckled. \\ \end{tabular}$ | F ₂ parent | No. families | + | sp | w2 | w2 sp | Total | |-----------------------|--------------|-------|----|-------------|-------|-------| | | 9 | 152 | | | ***** | 152 | | Normai | 14 | 241 | 61 | | | 302 | | | 18 | 285 | | 101 | | 386 | | | - 23 | 221 | 59 | 70 | 13 | 363 | | (Y 3 7 - 3 | 2 | ••••• | 9 | • • • • • • | | 9 | | Speckled | 4 | | 22 | | 11 | 33 | | N71.'4 - 0 | 7 | | | 74 | | 74 | | White-2 | 17 | | | 241 | 79 | 320 | | White-2 speckled | 4 | | | | 31 | 31 | In general, the deficit of speckled segregates is also remarkable in F_3 , but its significance is unknown. ## SPECKLED-REDUCED. On crossing speckled-reduced with speckled, F_1 obtained is speckled; and in F_2 , segregation occurs in a simple fashion. The actual F_2 data are shown in Table 50. ${\bf Table} \quad {\bf 50}.$ ${\bf F}_2$ from the cross between speckled and speckled-reduced. | Cross | $^{\mathrm{sp}}$ | $\operatorname{sp-r}$ | Total | |-----------|------------------|-----------------------|-------| | 410×445 | 95 | 35 | 130 | | 410 × 449 | 80 | 27 | 107 | | Total | 175 | 62 | 237 | In Table 51 are shown F₂ obtained by the hybridization of speckled-reduced and normal, a dihybrid segregation taking place here. Table 51. F₂ from the cross between speckled-reduced and normal. | Cross | + | sp | sp-r | Total | |---------------|-----|-----|------|-------| | 410 × 190 | 274 | 63 | 28 | 365 | | 410×26 | 171 | 41 | 13 | 225 | | Total | 445 | 104 | 41 | 590 | The segregation occurred into 12 normal: 3 speckled: 1 speckled-reduced in proportion. An F_3 examination was made by one of these crosses, and the results are shown by the data in Table 52. Table~~52. F_{3} of cross 410 \times 26, showing segregation of speckled and speckled-reduced. | F ₂ parent | No. families | + | sp | sp-r | Total | |-----------------------|--------------|-----|----|------|-------| | | 10 | 355 | | | 355 | | Normal | 4 | 177 | 60 | | 237 | | | 9. | 333 | 84 | 27 | 444 | | Constaled | 2 | | 34 | | 34 | | Speckled | 4 | | 78 | 25 | 103 | | Speckled-reduced | 3 | | | 22 | 22 | By the qualifying nature of speckled-reduced for speckled, the gene speckled-reduced has no effect on the Sp genotype. The background colour of the corollas of speckled-reduced may be yellowish or pale, with nearly all gradations extending to white. Owing to the occurrence of some quantitative variation in the intensity of the background colour, the classification of the segregates and the identification of the genes working therein are difficult in the hybrid progeny in general. The yellowish background colour of the corolla is due to flavon contained in the cells, and the fine spots occurring on the same corolla to the anthocyanin pigment. However, in the hybrid progeny of a cross made between white-1 and intense speckled was presented a sharp demarcation in the intensity of the yellowish background of speckled-reduced. The segregation occurred simultaneously as to white-1, speckled and speckled-reduced, the F₂ obtained being presented in Table 53. Table 53. F₂ from the cross between white-1 and intense speckled, showing two types of background colour. | Cross | + | i | w1 | sp | i sp | sp w1 | sp-r | i sp-r | sp-r w1 | Total | |----------------|----|----|----|----|------|-------|------|--------|---------|-------| | 3×350 | 43 | 16 | 29 | 11 | 5 | U | 6 | 2 | 0 | 112 | Out of the genes segregated in this hybridization, white-1 and speckled-reduced came of the white-1 parent, and the other two genes, intense and speckled, were contributed by its partner. The gene intense is also effective to the flavon colour itself, exhibiting much intense yellowish background to be recessive to its normal dilute background. The other points in this segregation are already familiar from the previous description. The F_3 data are shown collectively in Table 54. ${\rm Table~54.}$ ${\rm F_3~of~cross~3\times350,~showing~segregation~of~white-1,~speckled,}$ ${\rm speckled-reduced~and~intense.}$ | | | | | | | · · | | | | | | | |---------------------------------|-----------------|---|-----|----|-----|-----|---------|-------------|------|-----------|------------|----------| | F ₂ parent | No.
families | Genotype | + | i | w1 | sp | sp
i | sp
w1 | sp-r | i
sp-r | w1
sp-r | Total | | | 5 | +/w1 + +/sp + | 31. | | 19 | 14 | | 0 | | | | 64 | | | 3 | +/w1 + sp +/sp-r | 13 | | 8 | | | | 10 | •• ••• | 0 | 31 | | Normal | 5 | +/w1 + /i + /sp + | 36 | 11 | 25 | 17 | 4 | 0 | | | | - 93 | | Normai | 3 | +/w1 + +/sp +/sp-r | 39 | | 22 | 17 | | 0 | 6 | | 0 | 84 | | | 2 | +/w1 +/i sp +/sp-r | 27 | 9 | 21 | | | | 18 | 3 | 0 | 78 | | | 3 | +/w1 +/i +/sp +/sp-r | 36 | 7 | 26 | 19 | 4 | 0 | 6 | 3 | 0 | 101 | | | .3 | +/w1 i +/sp + | | 30 | 19 | | 10 | 0 | | | | 59 | | Intense | 4 | +/w1 i sp +/sp-r | | 54 | 25 | | | | | 29 | 0 | 108 | | | 3 | +/w1i +/sp +/sp-r | | 56 | 33 | | 18 | 0 | | 7 | 0 | 114 | | White-1 | 20 | w1 ? ? ? | | | 389 | | | | | | | 389 | | Speckled | 2 | + + sp +/sp-r | | | | 32 | | | 12 | | | 44 | | Intense
speckled | 2 | + i sp +/sp-r | | | | | 27 | • • • • • • | | 17 | | 44 | | Speckled- | 1 | + + sp sp-r | | | | | | | 21 | | | 21 | | reduced | 2 | $+ +/i \operatorname{sp} \operatorname{sp-r}$ | | | | | | · | 54 | 14 | | 68 | | Intense
speckled-
reduced | 1 | + i sp sp-r
+/w1 i sp sp-r | | | | | | | | 1.6
7 | 3 | 16
10 | On account of the small number of individuals contained, five families are omitted from this table. In one F₃ family, No. 48. the segregation occurred into intense speckled-reduced and white with green stem. The mother plant of this family bore intense speckled-reduced flowers, and was heterozygous for white-1. Therefore, its genotype is i sp sp-r +/w1. Owing to the very close linkage between white-1 and speckled, the production of white flowers with spotted (sp) or green (sp-r) stems should be very rare. The appearance of such plants is due to crossing over between sp and w1. The writer calculated the frequency of recombination between them at roughly 0.8 per cent. from the relative possibility in the occurrence of such an unusual family. ## FADED. Faded behaves as a simple recessive to normal. In Table 55 are collected F₂ obtained by selfing normal hybrids from faded and normal. Table 55. ${\rm F}_2$ from the cross between faded and normal. | Cross | + | fd | Total | |-------------------|-----|-----|-------| | $\beta \times 26$ | 408 | 133 | 541 | | $N \times \beta$ | 329 | 110 | 439 | | Total | 737 | 243 | 980 | An F_3 examination was made and the data obtained are shown in Table 56. Table 56. F_s of cross $\beta \times 26$, showing segregation of faded. | F ₂ parent | ent No. families + | | fd | Total | | |-----------------------|--------------------|-------------|-----|-------|--| | Normal | 10 | 211 | | 210 | | | | 18 | 363 | 118 | 481 | | | Faded | 7 | • • • • • • | 82 | 82 | | Thus, faded differs by one gene to normal, which is dominant to the former. In Table 57 is indicated
another F₂ showing a little complicated segregation. Table 57. F₂ from the cross between white-3 and white-2, segregating faded and Dilute. | Cross | .L | D | fď | w2 | w3 | Total | |----------------|----|----|----|----|----|-------| | 461×415 | 21 | 44 | 18 | 39 | 39 | 161 | The segregation occurred in regard to four genes, Dilute, faded, white-2 and white-3. Owing to the close linkage between Dilute and white-2, the segregating proportion is in part exhibiting an unusual distribution. Theoretically the parental constitutions are simple w3 for white-3, and D w2 fd for white-2; therefore we should obtain F₂ segregated into 18 Dilute: 9 normal: 9 faded: 12 white-2: 16 white-3 in proportion, when Dilute faded is classified together with faded in observation, because of difficulty in its demarcation. This expectation practically fulfills the data obtained. Table 58 contains one more F₂ segregated into faded, speckled, speckled-reduced and white-2. $\begin{array}{ccc} \text{Table} & 58. \\ \\ \text{F}_2 \text{ from the cross between speckled-reduced and white-2,} \\ & \text{segregating faded.} \end{array}$ | Cross | -1- | fd | $^{\mathrm{sp}}$ | sp fd | sp-r | w2 | Total | | | | | |------------------|-----|----|------------------|-------|------|----|-------|--|--|--|--| | 410×415 | 41 | 13 | 12 | 4 | 5 | 28 | 103 | | | | | The hybridization corresponds to cross sp sp-r \times w2 fd, therefore we should obtain F₂ segregating 108 normal: 36 faded: 27 speckled: 9 speckled faded: 12 speckled-reduced (including speckled-reduced faded) 64 white-2 in proportion. The theory practically accords with the result obtained. The double recessive flower, speckled faded, has faded speckles with whitish centres. ## SMEARY. Smeary is also a simple recessive to normal. In Table 59 are shown F_2 presenting this fact. Table 59. F_2 from the cross between smeary and normal. | Cross | + | fds | Total | |-------------------------------|------------|----------|-------| | $M3 \times ID$ $26 \times M3$ | 179
118 | 62
41 | 241 | | Total | 297 | 103 | 400 | In another cross the segregation occurred into smeary and white-2, the data of which are shown in Table 60. Table 60. F₂ from the cross between smeary and white-2. | *************************************** | | | | | |---|-----|----------------------------|----|-------| | Cross | + | fd^{s} | w2 | Total | | $M3 \times NN$ | 104 | 35 | 44 | 183 | An F_3 examination of this cross was made and the data are summarized in Table 61. ${\rm Table} \quad {\rm 61.}$ ${\rm F_3}$ of cross M3×NN, showing segregation of smeary and white-2. | F ₂ parent | No. families | + | fds | w2 | Total | |-----------------------|--------------|-------|-----|-------|-------| | Normal | 1 | 60 | | | 60 | | | 4. | 46 | 18 | | 64 | | | 10 | 215 | 66 | | 281 | | | 10 | 168 | 54 | 78 | 300 | | Smooner | 1 | ***** | 47 | ***** | 47 | | Smeary | 1 . | ••••• | 1.6 | 3 | 19 | | White-2 | 10 | | | 177 | 177 | Two genes, smeary and white-1, are related to the segregation. Table 62 is concerned with F_2 segregating smeary and magenta. | Cross + | | fd^{s} | mg | mg fds | Total | |----------------|-----|----------------------------|-----|--------|-------| | $M3 \times A5$ | 136 | 40 | 37 | 11 | 227 | | $M3 \times BK$ | 151 | 57 | 72 | 13 | 293 | | Total | 287 | 97 | 109 | 27 | 520 | In Table 63 are indicated F_3 results of cross $M3 \times A5$ as the proof of dihybrid segregation of smeary and magenta. ${\bf Table \quad 63.}$ ${\bf F_3}$ of cross M3×A5, showing segregation of smeary and magenta. | F ₂ parent | No. families | + | fds | mg | mg fds | Total | |-----------------------|--------------|-----|-------|-----|--------|-------| | | 6 | 123 | | | | 123 | | Normal | 11 | 232 | 84 | | | 316 | | | 2 | 25 | | 13 | | 38 | | | 15 | 204 | 70 | 74 | 1.8 | 366 | | Smeary | 5 | | 144 | | | 144 | | Smeary | 11 | | 189 | | 68 | 257 | | Magenta | 3 | | | 53 | | 53 | | THEORY ALL DEN | 9 | | ***** | 180 | 47 | 227 | | Magenta smeary | 1 | | | | 49 | 49 | The F₂ frequency of another cross is shown in Table 64, which contains the segregating data for smeary, with simultaneous assortments of speckled and speckled-reduced. Table 64. F2 from the cross between smeary and speckled-reduced. | Cross | + | fd^{s} | sp | sp-r | Total | |--------|-----|----------------------------|----|------|-------| | M3×410 | 103 | 28 | 45 | 12 | 188 | Three genes being concerned in this hybridization, the segregating ratio is theoretically 36 normal: 12 smeary: 12 speckled: 4 speckled-reduced or simply 9:3:3:1, as smeary speckled is classed under speckled in observation. Here a marked deviation is found in the middle classes, but we may pass it over without attaching any serious importance to it. With the experimental results above shown, faded and smeary are allelomorphic to normal, and both characters manifest quantitative degrees of dilution in the flower colour. Under such circumstances, faded and smeary may have the same location on a chromosome. On hybridization of faded with smeary, F_1 obtained bears smeary flowers without reverting to normal. Table 65 contains F_2 obtained from such a cross. Table 65. \mathbf{F}_2 from the cross between faded and magenta dusky smeary. | Cross | fds | mg fd ^s | dy fds | mg dy fds | fd | mg fd | dy fd | mg dy fd | Total | |-------------------|-----|--------------------|--------|-----------|----|-------|-------|----------|-------| | $M3 \times \beta$ | 71 | 37 | 20 | 5 | 22 | 9 | 10 | 3 | 117 | The segregation occurred as to faded (versus smeary), magenta and dusky in a trihybrid fashion. Faded is a simple recessive to smeary, therefore the three forms, normal, smeary and faded, are allelomorphic to one another. ## RAYED. Rayed is an old variation acting as dominant to normal. In the course of experiments, the writer obtained Rayed mutants with characteristics similar to the old Rayed. Using this new Rayed, he made several crossings, the results of which are presented in Table 66. $\label{eq:Table-66} {\it Table-66}.$ ${\it F_2}$ obtained by using the duskish Rayed mutant in hybridization. | Cross | Ry | + | Ry dk | dk | Total | w1 | w2 | |------------------|-----|----|-------|------|-------|-------|-------| | 475×450 | 146 | 41 | 47 | 16 | 250 | | | | 470×450 | 69 | 26 | 10 | 5 | 110 | (34) | | | 471×450 | 26 | 7 | 12 | 1 | 46 | (21) | ••••• | | 450×45 | 75 | 18 | 21 | . 10 | 124 | | (48) | | Total | 316 | 92 | 90 | 32 | 530 | ***** | | Rayed and duskish being located quite apart in the same chromosome, practically a free assortment occurred between them. The parental duskish Rayed is a mutant form obtained in a duskish family. As stated elsewhere, the duskish Rayed compound results in a white flower, reducing the duskish colour of the corolla, though the rays are faintly coloured. Then, the results obtained by using the old Rayed in hybridization are as follows: No. 405 bore very faintly coloured (purple magenta dusky light-2) flowers with Rayed restriction. When this was crossed with No. 65, purple intense, the writer obtained F₁ bearing purple intense Rayed flowers. In Table 67 is shown an F₂ thus obtained. | Cross | pr
Ry | pr
i | pr
lt2 | pr
mg i | pr mg
lt2 | pr
dy i | pr dy
lt2 | pr mg
dy i | pr mg
dy It2 | Total | |-----------------|----------|---------|-----------|------------|--------------|------------|--------------|---------------|-----------------|-------| | 65×505 | 288 | 44 | 14 | 10 | 6 | 14 | 4 | 5 | 1 | 386 | In preparation of the table, the writer has collected all Rayed compounds under the column of Rayed, because of difficulty in classification among them. In Table 68 are presented the summarizing F₃ data of this cross. This hybridization gave segregation for Rayed, light-2, magenta and dusky, exhibiting a tetrahybrid distribution of the segregates. Outwardly the segregation is much complicated, but the genes are segregated independently of each other. In the Rayed flowers, a continuous gradation was found in the quantitative manifestation of the colour, extending to nearly white. In the non-Rayed flowers, however, the demarcation of Table 68. $\rm F_{s}$ of cross 65×505, showing segregation of Rayed, light-2, magenta and dusky. | * <u>*</u> | | | 1111 | адец | ta anu | dusky | • | | | | | |---------------------------|-----------------|-------------|---------|---------------|------------|--------------|------------|--------------|-------------|-----------------|-------| | F ₂ parent | No.
families | pr
Ry | pr
i | pr
1t2 | pr
mg i | pr mg
lt2 | pr
dy i | pr dy
lt2 | pr mg | pr mg
dy lt2 | Total | | | 18 | 1022 | | | | | | | | | 1022 | | | 2 | 78 | 27 | | | | | | | | 105 | | | 3 | 56 | 16 | 7 | | | | | | | 79 | | | 2 | 91 | 23 | 5 | -6 | 1 | | | | | 126 | | | 3 | 280 | 65 | 13 | | | 15 | 3 | | | 376 | | | 1 | 8 | 2 | | 0 | | 1 | | 1 | | 12 | | | 3 | 190 | 34 | 10 | 9 | 3 | 9 | 1 | 4 | 0 | 260 | | Darma In Dorsa I | 1 | 23 | | 6 | | | ••••• | 2 | | | 31 | | Purple Rayed | 2 | 155 | | 43 | | 12 | | 10 | | 3 | 223 | | | 3 | 71 | | | 26 | | | | ••••• | | 97 | | | 1 | 92 | | | 26 | 11 | | | | | 129 | | | 1 | 60 | | | 14 | | | ••••• | 4. | | 78 | | | 2 | 107 | | | 21 | 13 | | | - 11 | 3 | 155 | | | 1 | 80 | | | | 21 | | | | 6 | 107 | | | 1 | 44 | | | | | 15 | 4. | • • • • • • | ••••• | 63 | | | 3 | 252 | | . | ••••• | | 36 | 24 | 11 | 6 | 329 | | 4 | 1 | | 55 | 19 | | , | | ••••• | | | 74 | | | 1 | | 26 | | 13 | | | | | | 39 | | Purple intense | 1 | | 29 | | | | 8 | | | ***** | 37 | | | 1 | · · · · · • | 11 | 2 | | | 3 | 1 | | | 17 | | | 1 | • • • • • • | 48 | • • • • • | 19 | | 15 | | 4. | • • • • • • | 86 | | Purple magenta intense | 4. | | | , . . | 300 | 91 | | | 83 | 38 | 512 | | Purple magenta
light-2 | 1 | | | | | 77 | , . | ••• | ***** | | 77 | the
various compound forms was rather clear. One of the writer's old strain, No. 78, carries speckled Rayed genes for the flower colour pattern. Therefore, when this strain is crossed with speckled, we should obtain speckled Rayed F_1 plants, which give rise to F_2 segregated into 3 speckled Rayed: 1 speckled in proportion, as shown in Table 69. Table 69. ${\bf F_2}$ from the cross between speckled Rayed and speckled. | Cross | sp Ry | sp | Total | |--------|-------|----|-------| | 78×445 | 85 | 23 | 108 | In hybridization of this strain to faded, the writer obtained F_2 segregating in a trihybrid fashion, as shown by the data in Table 70. ${\bf Table} \quad {\bf 70}.$ ${\bf F_2} \ {\bf from \ the \ cross \ between \ speckled \ Rayed \ and \ faded}.$ | Cross | Ry | + | fd Ry | sp Ry | ga | 1 | sp fd Ry | sp fd | Total | |----------------------------------|----------|---------|----------|----------|----|--------|----------|--------|-----------| | $SA \times 78$
$78 \times AO$ | 21
53 | 4
22 | 17
22 | 13
24 | 9 | 1
8 | 1
7 | 0
1 | 57
146 | | Total | 74 | 26 | 39 | 37 | 9 | 9 | 8 | 1 | 203 | As stated before, when speckled is combined with faded, producing a double recessive, the spots on the corolla are faded in colour, embracing whitish centres. Table 71 contains the similar data with an additional segregation of white-2. $\begin{tabular}{ll} Table & 71. \end{tabular}$ F2 from the cross between white-2 and speckled Rayed. | Cross | Ry | + | fd Ry | sp Ry | sp | fd | sp fd Ry | sp fd | w2 | Total | |---------------|----|----|-------|-------|----|----|----------|-------|----|-------| | 415×78 | 64 | 35 | 28 | 28 | 7 | 8 | 3 | 0 | 57 | 230 | In Table 72 is shown an F₂ segregating the genes, Rayed, speckled, speckled-reduced and white-1. ${\bf Table} \quad {\bf 72}.$ ${\bf F_2}$ from the cross between white-1 and speckled-reduced Rayed. | Cross | Ry | + | sp Ry | sp | sp-r | w1 | Total | |------------------|----|----|-------|----|------|----|-------| | $SK \times 440b$ | 33 | 19 | 8 | 5 | 4 | 17 | 89 | In this hybridization, the frequency of the segregates is expected to be 108 Rayed: 36 normal: 27 speckled Rayed: 9 speckled: 12 speckled-reduced (including speckled-reduced Rayed): 64 white-1 in proportion, which practically corresponds with the data above shown. ## FLECKED. The gene flecked is recessive to normal. In Table 73 are collected F_2 showing the segregation of flecked. Table 73. ${\bf F_2}$ from the cross between flecked and normal. | Cross | + | fl | Total | |----------------------|------------|----------|------------| | 427 × 465
465 × N | 252
123 | 87
40 | 339
163 | | Total | 375 | 127 | 502 | Thus, the genetic relation of flecked to normal is simple, but the property of the gene is made intricate by its high mutability. # LINED. Lined being dominant to normal, F_1 from them bears Lined flowers. Table 74 contains F_2 showing segregation for Lined and normal. Table 74. ${\rm F_2}$ from the cross between Lined and normal. | Cross | Ln | + | Total | |---------|-----|----|-------| | 402×405 | 54 | 32 | 86 | | N×405 | 225 | 55 | 280 | | Total | 279 | 87 | 366 | The simple dominant nature of Lined is also testified in Table 75, which contains F_2 with simultaneous segregations of speckled and Rayed. Table 75. F2 from the cross between Lined and speckled Rayed. | Cross | Ry Ln | Ry | Ln | sp Ry | + | $^{\mathrm{sp}}$ | Total | |-----------------|-------|----|----|-------|----|------------------|-------| | 78×405 | 74 | 26 | 24 | 27 | 13 | 13 | 177 | The expectation is 27 Rayed Lined: 9 Rayed: 9 Lined: 12 speckled Rayed (including speckled Rayed Lined): 3 normal: 4 speckled (including speckled Lined), and this was practically fulfilled by the data. Table 76 contains F_2 segregated into Lined and flecked. Table 76. \mathbf{F}_2 from the cross between flecked and Lined. | Cross | Ln | + | fl | Total | |------------------|-----|----|----|-------| | 465×405 | 122 | 39 | 62 | 223 | The segregating ratio nearly accords with 9 Lined: 3 normal: 4 flecked, indicating a free assortment between Lined and flecked. ## STRIATED. The gene striated acts as a simple recessive to normal. Table 77 includes F_2 segregated into striated and Lined. Table 77. \mathbf{F}_2 from the cross between Lined and striated. | Cross | Ln | + | sa | Total | |-----------|----|---|----|-------| | 401 × 405 | 52 | 7 | 16 | 75 | The aberration in the segregating ratio is due to linkage between striated and Lined, the frequency of recombination being roughly 16 per cent. ## Blizzard-1. The F₂ data of Blizzard F₁ obtained by crossing Blizzard-1 with normal are shown in Table 78. Table 78. F2 from the cross between Blizzard-1 and normal. | Cross | Bz1 | + | Total | |----------------------------|------------|-----------|------------| | $C15 \times 26$
N × C15 | 331
265 | 108
89 | 439
354 | | Total | 596 | 197 | 793 | Some of F_3 were examined with one of these crosses, as shown by the data in Table 79. Table 79. F_{3} of cross C15 \times 26, showing segregation of Blizzard-1. | F ₂ parent | No. families | Bz1 | + | Total | |-----------------------|--------------|-----------|--------|-----------| | Blizzard-1 | 2 7 | 30
129 |
45 | 30
174 | | Normal | 5 | ••••• | 77 | 77 | The data do not contain any notable facts beyond proving the simple dominant nature of Blizzard-1 to normal.