The Genetics of Pharbitis purpurea.

By

Yoshitaka Imai.

With Plate VIII.

CONTENTS.

Introduction													Page.
Introduction	•••	•••	• • •	••	•••	•••	•••	• • •		•••	•••	• • • •	199
Stem color ··· ··· ···	•••	•••	•••		•••	• • •	•••	•••	•••				200
Flower color · · · · ·	•••		•••		•••	• • •	•••		•••	•••	•••	•••	204
Feathered corolla	• • •	•••			•••	• • •	•••	٠٠.	•••	•••	•••	•••	217
Seed color					•••		•••	٠	•••	•••			220
Summary		٠	• • •	•••	• • •	•••	•••	•••	•••	•••	•••	•••	221
Explanation of plate			• • •										222

Introduction.

Pharbitis Nil, the Japanese morning glory, which exhibits remarkable variation in its foliage and flowers, has been a favorable genetic subject with us for many years, but only few papers dealing with the genetics of Pharbitis purpurea, a species closely related to the Japanese mornig glory, can be found in the literature. Though Ph. purpurea shows less variability in its forms compared with the Japanese morning glory the investigation of its genetics is of importance for a comparative study. The plants of this species, however, grow luxuriantly under common field culture, and it is troublesome to keep the vines from entwinning with each other. In my study, much labor was devoted to the raising of Ph. Nil, so less time was given to Ph. Under such circumstances, I failed to take the record on a large scale, especially on the F4 plants of a cross, with which I was chiefly concerned, though I had cultivated a sufficient number of progenies.

The first paper which deals with the genetics of *Ph. purpurea* was [Jour. Coll. Agric., Vol. IX, No. 3, 1927.]

published by BARKER¹. This was followed by my Japanese papers². The former author, however, made an experimental series by observing only a relatively small number of offspring in his crossings, therefore he left various points open for a subsequent final decision. The present paper contains only a few additional data to those, with which I had dealt previously in my Japanese papers, but it seems advisable to publish these data in English, as I have started further investigations on this plant, and it will take two or three years before I can make further reports.

Stem Color.

The qualities of the stem appear in the following three forms:

Condition Denomination (abbreviation)

- 1. Colored intensely Colored stem (c. s.)
- 2. Faintly colored, but the leaf axil colored deeply... Faintly colored stem (f. c. s.)
- 3. Entirely colorless Green stem (g. s.)

The three forms breed true to their respective types when they are selfed³, and with such pure strains the following results were obtained in making hybridization experiments.

Colored stem versus faintly colored stem. The F_1 plants obtained by both reciprocal matings have invariably self-colored stems, demonstrating the recessiveness of the faintly colored condition with dark axils. Table I gives the F_2 segregation of such crossings.

Table I. The F_2 data of the cross, colored stem \times faintly colored stem, and its reciprocals.

Cross	Stem color of parents	Colored stem	Faintly colored stem	Total
R'. S.×W. D.	c. s.×f. c. s.	105	48	153
W. D. $\times \mathbb{R}'$. S.	f. c. s. ×c. s.	34	19	53
W. D. \times R. S.	f. c. s.×c. s.	59	16	75
To	otal	198	83	281
Exp	ected	210.75	70.25	281

^{1.} Heredity studies in the morning-glory (*Ipomea purpurea* [L.] Roth). Cornell University Agricultural Experiment Station, Bulletin 392: 1-38, 1917.

^{2.} IMAI, Y.—Genetic studies in morning glories. III. Bot. Magazine, Tokyo. 34:217-247. 1920. (In Japanese.) Genetic studies in morning glories. VI. Ibid. 36:45-48. 1922. (In Japanese.)

^{3.} I made hand-pollination to obtain selfed seeds, as we cannot raise sufficient seeds leaving flowers under bagging on account of the different length of the pistil and stamens in a flower.

The segregation occurred quite in accordance with the simple ratio of monohybrid'; namely, 3 colored stems: 1 faintly colored stem. I made the F_3 examination with one of these three matings to verify the results gained in the foregoing generation. On selfing 112 F_2 plants, which comprised 75 colored and 37 faintly colored stems, we recorded F_3 summarized in Table II.

 $\label{eq:Table II.} A \mbox{ summary of the F_3 data of the cross, R'. $S.$\times$W. $D.$, showing the segregation of colored and faintly colored stems.}$

Character of F ₂	Number of pedigree	Colored stem	Faintly colored stem	Total
Colored stem	28	882		882
Colored stem	47 Expected	1264 1272	432 424	1696 1696
Faintly colored stem	37		1086	1086

Thus the colored F_2 stems composed of 28 homozygotes and 47 heterozygotes, where we expect 25 and 50, respectively, and the segregation of two forms into 1264 colored and 432 faintly colored stems is remarkably approaching the simple ratio, on which we should expect 1272 and 424 for each. The F_4 data also confirmed the one-factor segregation. Namely: On selfing 3 F_3 plants having colored stems, offspring of No. 30, which bred true to the colored stem in F_3 , we obtained 45 F_4 with colored stems. Nos. 9, 34 and 35 were the F_3 pedigrees making segregation of stem forms in question. On examining the F_4 progenies of 15 plants from these pedigrees, I found the result shown in Table III.

Table III. Some F_4 data repeating the F_3 feature as to the inheritance of stem color.

Character of F ₃	Number of pedigree	Colored stem	Faintly colored stem	Total
	9	148		148
Colored stem	5 Expected	88 90	32 30	120 120
Faintly colored stem	1 .		10	10

^{1.} A marked variation in intensity of the stem color occurred, but I did not make any classification on this point.

I selected 10 plants with faintly colored stems from the F_3 progenies of Nos. 14 and 72, both pedigrees being bred true to the faintly colored condition, and found the constancy of the form in the subsequent generation in observing 199 individuals, which had all faintly colored stems with dark axils. These F_4 data show nothing but the result we expected.

Besides selfing the hybrids, I made back-crossings with their parents. In back-crossing the F₁ plants with the colored stems, I obtained 79 plants quite deeply colored, as expected, whereas, when the same procedure was made with the faintly colored stem instead of the colored one, the segregation of two forms occurred in an equal ratio, as is shown in Table IV.

TABLE IV.

The back-crossing data of F₁, which were obtained by the cross, colored and faintly colored stems, with faintly colored stem.

	Colored stem	Faintly colored stem	Total
Observed	122	120	242
Expected	121	121	242

With the results above-cited we can safely conclude that the quantitative diversity of the colored and faintly colored stems¹ lies in a one-factor difference, i. e., the former is manifested by a dominant factor, R, while the latter by its recessive mate, r.

Colored stem versus green stem. The cross gave F_1 with colored stems, representing the recessiveness of the green condition, and selfing such hybrids I recorded F_2 shown in Table V.

TABLE V. The F_2 data of the cross, colored stem \times green stem, and its reciprocal.

Cross	Stem color of parents	Colored stem	Green stem	Total
R'. S. × St. S.	c. s.×g. s.	108	31	139
R'. S. × W. S.	c. s.×g. s.	83	24	107
W. S.×R. S.	g. s.×c. s.	108	32	140
W. S.×ℝ. S.	g. s.×c. s.	25	8	33
Tot	al	324	95	419
Expe	ted	314.25	104.75	419

^{1.} A few strains of *Pharbitis Nil* have green stems with colored leaf axils and produce colored flowers. The condition is transmitted as a simple recessive to the fully colored stem bearing colored flowers.

The segregation occurred quite simple in accordance with a 3:1 ratio, which indicates the one-factor difference between colored and green stems in their genotypes. The back-crossing experiments also proved this condition as is shown by the data in Table VI.

TABLE VI.

The back-crossing data of F₁, which were obtained by the cross, colored and green stems, with their parents.

Back-cross	Colored stem	Green stem	Total
$F_1(R, S, \times W, S,) \times R, S,$	30	arrance/di	30
$F_1(R. S. \times W. S.) \times W. S.$	59	55	114
Expected	57	57	114

The colored stem differs from the green stem by one factor, but the difference lies in a different relation to the factors involved in the case of colored *versus* faintly colored.

FAINTLY COLORED STEM versus GREEN STEM. The F₁ plants had quite distinct stems in their color from both parents, their stems being colored intensely. In F₂, the segregation occurred in three forms, colored, faintly colored and green stems, as is represented by the data in Table VII.

Table VII.

The F_2 data of the cross, green stem \times faintly colored stem, and its reciprocal.

Cross	Stem color of parents	Colored stem	Faintly colored stem	Green stem	Total
St. S. × W. D.	g. s.×f. c. s.	125	33	58	216
W. S.×W. D.	g. s. \times f, c. s.	105	32	49	186
W. D. × W. S.	f, c, s, ×g, s,	70	21	32	123
T	otal	300	86	139	525
$\mathbf{E}_{\mathbf{X}}$	pected	295.31	98.44	131.25	525

 $x^2 = 2.103$ P = 0.353

The three forms appeared in the relations of nearly 9:3:4, a slightly modified dihybrid ratio, which indicates the segregation of two factors in this case. As formerly assumed, the difference between colored and faintly

^{1.} The green stem behaves also as a simple recessive to the colored condition in *Pharbitis Nil*, but sometimes the segregation occurs in more complicated ratios on account of the countenance of complemental factors.

colored stems is due to the allelomorphs of R and r, and that between colored and green stems to another set of factors. Now let us postulate the factors concerning the diversity of the latter case by S and s, which are responsible for the presence or absence of anthocyanin pigment in the stem. The effect of the allelomorphs R and r, therefore, is only discernible in the coexistence of S. Under such conditions, the genotypes of three stem forms are determined as follows:

Colored stem \cdots \cdots	•••	•••		•••	···			• • •	RS
Faintly colored stem	• • •	• • •	•••	• • •	•••	•••	•••	•••	rS
Green stem				• • •				•••	Rs or rs

The cross between faintly colored and green stems, therefore, is genetically designated as $rrSS \times RRss$, from which we should expect the segregation of 9 colored stems (1RRSS+2RrSS+2RRSs+4RrSs), 3 faintly colored stems $(1rrSS \times 2rrSs)$ and 4 green stems $(1RRss \times 2Rrss \times 1rrss)$ in F_2 .

Flower Color.

The flower-color series of *Ph. purpurea* contains blue, purple, red shades¹ etc., but the present paper is confined to the red shaded series of variation. The parents, with which my crossing experiments were made and the record of their hybrid progeny taken, are the following three strains:

- 1. White single flower with green stem (w. s.)
- 2. White double flower (Pl. VIII, fig. 1) with faintly colored stem (W. D.)
- 3. Intense-red single flower (Pl. VIII, fig. 2) with colored stem (R. S., R'. S.)

THE RESULT OF W. S. \times R'. S. The F_1 plants bore flowers in an intermediate red (nearly the same as Pl. VIII, fig. 5) between two parents. In F_2 , the segregation occurred quite simply, i. e., 1 intense: 2 intermediate: 1 white in every four, as is shown by the actual data in Table VIII.

Table VIII. The F_2 data of the cross W. S. \times R'. S. and its reciprocal, showing the simple segregation of flower color.

Cross	Intense-red flower	Intermediate-red flower	White flower	Total
W. S.×R'. S.	10	15	8	33
R′. S.×W. S.	25	58	24	107
Total	35	73	32	140
Expected	35	70	35	140
$v^2 = 0.386$	P-0.849	1		

^{1.} BARKER made some experiments with various shaded flowers including flaked ones.

Thus we had monohybrid segregation in flower color at present crossing. In Table IX, I collected the F_3 data, which came to quite prove the nature recognized in the previous generation.

TABLE IX. A summary of the F_3 data of the cross R'. S.×W. S., showing the segregation of flower color.

Character of F ₂	Number of pedigree	Intense-red flower	Intermediate- red flower	White flower	Total
Intense-red flower	5	93			93
Intermediate-red flower	7 Expected	75 79.25	160 158.50	8 2 79.25	317 317
White flower	5			44	44

 $\chi^2 = 0.338$ P=0.867

Thus the intense-red and white flowers employed as parents in the present crossing is due to one factor difference in their genotypes. The stem color of W. S. is green and all the white-flowered segregates in the hybrid progeny have colorless stems, indicating the fact that the color of stem and flower in this case is manifested by one and the same factor¹. Generally speaking, the green stem factor r is concerned with the production of a white flower or a flower with white ground color on which flaking occurs as the case is in my St. S. strain.

The dominancy of a factor was much emphasized formerly and embodied into one of Mendel's laws under the term "law of dominance". The dominancy, however, is not always perfect and sometimes hybrids assume quite intermediate colors or forms. Usually the dominancy is recognized, but sometimes we may be able to detect some heterozygotic characteristics when the study is made more closely, or when the hybrids are surveyed statistically or anatomically. The dominancy, therefore, appears in various expressions within perfect and intermediate limits. Correns' case of the flower color of Mirabilis Jalapa is a well-known example, in which the heterozygote shows an intermediate color of both parents. Usually the heterozygous flower of red (=crimson) and white is referred to as "pink" ("hell rose") in color. Recently Kiernan and White's protested against this terminology,

^{1.} In Pharbitis Nil, green stems with green leaf axils invariably has white corollas, whereas colored stems bear colored flowers with some exceptions in which white flowers are the cases.

^{2.} Die neuen Vererbungsgesetze. Berlin. 1912.

^{3.} Inheritance in four o'clocks, Journ. Heredity. 17: 383-386, 1926.

and sympathized with Marryar's "magenta". Baur² demonstrated the analogy with his observation made in the flower color of Antirrhinum majus. In the Japanese morning glory, Pharbitis Nil, which is closely related to the species I am now discussing, no similar cases are known up to the present as to the inheritance of the flower color, though the hybrids at times assume an intermediate shade of the colors of both parents by the occurrence of a dominant diluting factor. This fact stands in curious contrast with the intermediate expression of the factor for the flower color in Pharbitis purpurea, as stated before.

The result of R'. S. \times W. D., etc. One of the parents of this sort of matings, W. D., is a white feathering flower (Pl. VIII, fig. 1) yielding whitish or tan seeds, and its partners are intense-red single flowers (Pl. VIII, The F₁ plants obtained by both reciprocal fig. 2) producing black seeds. matings bore dilute-red flowers (Pl. VIII, fig. 3), representing an intermediate state of flower color of parents. The flower color of these hybrids, however. is somewhat lighter than the F1 flowers of the previous crossing, in which the white-flowering parent is W. S. yielding black seeds instead of W. D. producing whitish seeds. In F₂, the segregation occurred in no simple Before entering into a general discussion on the segregation of the flower color in F2, it is advisable to state the behavior of each factor in order. The first allelomorphic pair I am now going to discuss is a set designated Table X concerns the dihybrid segregation of this and the R, r pairs of factors.

TABLE X. The F_2 data of the cross W. D.×R. S. and the like, showing the difactorial segregation of flower color.

Cross	Colored stem			Faint	Total		
Cross	Ι	II	III	I′	II/	III/	Tota
V. S.×W. D.	29	57	19	11	18	19	153
V. D.×R′. S.	9	23	2	5	10	4	53
V. D.×R. S.	13	36	10	1	9	6	73
Total	51	116	31	17	37	29	281
Expected	52.69	105.375	52.69	17.56	3 5.12 5	17.56	281

^{1.} Hybridization experiments with *Mirabilis Jalapa*, Rpts. Evol. Comm. Roy. Soc. 5:32-50. 1909.

^{2.} Einführung in die experimentelle Vererbungslehre. Berlin, 1919. See "Tafel II" and its explanation in text.

In the colored-stem group, (I) contains intense-red flowers (Pl. VIII, fig. 4) just as R'. S. or R. S., and flowers (Pl. VIII, fig. 5) a little lighter than these, (II) the dilute flowers (Pl. VIII, fig. 6) just as F₁ and (III) those (Pl. VIII, fig. 10) with spots on the middle of rays, the intensity of the spots varying to some extent (Pl. VIII, fig. 11), including so faint ones as hardly to be recognizable. The faintly-colored-stem group includes the corresponding three forms in somewhat lighter color than the former group; namely, (I') contains intense-pink1 (Pl. VIII, fig. 7) and pink flowers (Pl. VIII, fig. 8), (II') flowers (Pl. VIII, fig. 9) having dilute color in their rays, on which the weak pink is shaded out toward the outer margin, and (III') white flowers (Pl. VIII, fig. 12). The segregating ratio of these six forms, three of colored-stem group and three of faintly-colored-stem group, occurred in the approximation of a 3:6:3:1:2:1 ratio in the correspondence of I:II:III:I': II': III', though the data may suggest the occurrence of weak coupling segregation. The F₃ examination was made and gave the results summarized in Table XI.

TABLE XI. A summary of the F_3 data of the cross R'. S, \times W. D., showing the difactorial segregation of flower color.

The state of the s	1							Na King	The state of the s
Character	Number of	Cc	olored ste	m	Faint	ly colored	l stem	Total	Genetic consti-
of F ₂	pedigree	I	11	III	I/	Π⁄	III	Total	tution
	10	211						211	SSUU
I	10 Expected	163 163,5		_	55 54.5			218 218	
	12 Expected	137 133	280 266	115 133				532 532	SSUu
II	27 Expected	=3.293 227 230.25	464 460 . 50	=0.197 224 230.25	85 76.75	144 153,50	84 76 . 75	1228 1228	
	ν2	=2.402	P :	=0.790					1
Trr	6			139				139	SSuu
III	9 Expected	_	-	186 187.5	_		$\frac{64}{62.5}$	250 250	} Ssuu
I′	8				362			362	88 <i>UU</i>
IΙν	13 Expected	_	Section of the sectio		117 127.5	251 255	142 127.5	510 510	ss Uu
	y. 2	=2576	P	=0.285					<u> </u>
Ш	14	_					209	209	ssuu

^{1.} In F₂, however, actually I had no intense-pink flowers owing to linked assortment, of which I will speak later.

Table XII contains a summary of F_4 as to the inheritance of the characters in discussion.

Table XII.

A summary of F_4 bred from F_3 given in the previous table, showing the difactorial segregation of flower color.

Charac-		Number	Co	lored ste	em	Faintl	y colore	d stem	m	Genetic
ter of F ₃	of F ₃	of F ₄ pedigree	I	II	III	Ι'	ΙΙ′	III'	Total	compo- sition
	9, 30, 34, 35	10	181				ALEXAND		181	SSUU
I	34, 35 Expected	4	81 82.5			29 37.5		-	110 110	
-	9,34	2			17				17	SSuu
III	35 Expected	1			7 7.5		Name of Street	3 2.5	10 10	Ssuu
I'	14,72	6				86		-	86	ssUU
II'	72 Expected	2		EMANORE .		18 14	30 28	8 14	56 56	} ssUu
	×2	=3.857	P	=0.148						1
III'	35, 72	3		-				67	67	ssuu

With these results we can clearly understand the nature of the allelomorphs, U and u, which give three phenotypes by the intermediate expression of the heterozygotic character, and the allelomorphs S and s result in two flower color series of intense and dilute, within which the respective three forms are displayed. When we designate the genetic constitution of the parental intense-red and white flowers as SSUU and ssuu respectively, we should have the following segregation in F_2 which bred from doubly heterozygous F_1 hybrids.

Colored stem

Faintly colored stem

I II III III I' III'

$$3 \begin{cases} 1 & SSUU \\ 2 & SsUU \end{cases}$$
: $6 \begin{cases} 2 & SSUu \\ 4 & SsUu \end{cases}$: $3 \begin{cases} 1 & SSuu \\ 2 & Ssuu \end{cases}$: $1 \begin{cases} 1 & ssUU : 2 \end{cases} \begin{cases} 2 & ssUu : 1 \end{cases} \begin{cases} 1 & ssuu \end{cases}$

So the segregates (I) and (I') have the *UU*-constitution, (II) and (II') the *Uu*-constitution and (III) and (III') the *uu*-one, and the monofactorial segregating data on this allelomorphic pair are shown in Table XII.

TABLE XIII. A summary of the F_2 , F_3 and F_4 data, showing the monofactorial segregation of the allelomorphs, U and u.

Generation	UU	Uu	uu	Total
F ₂	68	153	60	281
F_3	401	801	425	1627
$\mathbf{F_4}$	18	30	. 8	56
Total	487	984	493	1964
Expected	491	98 2	491	1964

 $x^2 = 0.045$ P = 0.982

The segregation occurs in fair accordance with the ratio 1:2:1, as expected. The white flowers of this crossing are due to the combined manifestation of two recessive factors, s and u, therefore their segregation takes place with the proportion of one-fourth in some pedigrees propagated from the III- and the II'-flowers and with the proportion of one-sixteenth in some pedigrees bred from the II-flowers. In the coexistence of the factors S, u results in white flowers with spots on their rays, while the replacement of this by its recessive factor produces apparently white flowers by the fading out of the spots.

Next let us state the behavior of another allelomorphic pair, D and d. The factor D, a diluting qualifier, is plainly visible outwardly only in the UU-flowers, so its segregation cannot be phenotypically detected in the other The colored flowers used as one parent in each crossing, were of an intense UU-color and they are regarded as carrying the SSUUdd-consti-The segregation of the dilute UU-flowers in the later hybrid generations indicates the countenance of the D-factor, the origin of which is The white flowers, the partners of attributed to the white-flowered parent. the colored flowers just described, therefore, are considered to be ssuuDD. From the triply heterozygous F₁ plants we should obtain the four phenotypes of color intensity in the classes I and I' by the segregation of two allelomorphic pairs, D, d and S, s. Practically, however, no flowers carrying the ssUUdd-constitution appeared in F2 owing to the occurrence of linkage between these two allelomorphic series. Before presenting the F2 data on the segregation of these factors in question I will make clear the behavior of the factor d with the data of its monofactorial segregation. flowers which are grouped under the forms I and I' were intense red, red and pink, but contained no intense pink (cf. Plate VIII). concerns the F₃ data of these F₂ flowers.

TABLE XIV.

The F_3 data of the intense-red, red and pink F_2 flowers, showing the behavior of the factor d.

Character of F ₂	Number of pedigree	Red flower	Intense- red flower	Pink flower	Intense- pink flower	Total	Genetic composition
	2	46				46	SSUUDD
	7 Expected	98 108.7 5	47 36.25			145 145	
Red flower	1 Expected	5 6		3 2		8 8	
	8 Expected	$\frac{106}{106.68}$	48 47.07	47 47.07	4 4.18	205 205	
	x2=0	0.040	P = 0.992				
Intense-red	1	******	20		and the same	20	SSUUdd
flower	1 Expected		$\frac{4}{3.75}$		1? 1.25	5 5	
Pink	5			286		286	ssUUDD
flower	3 Expected	Committee		59 57	17 19	76 76	$\left. ight\}$ ss $UUDd$

Among these segregations the one indicated in the last of the "red flower" column shows the result of linkage between the factors, s and d. The origin of these factors can be attributed the one to one parent and the other to its partner, so we expect more chance of obtaining repulsion pedigrees than coupling ones in F_3 . Actually all eight pedigrees, of which I made observation on the flower color, gave repulsion segregations.

Thus the behavior of the D, d allelomorphs can be visible when the flowers carry duplex constitution of the factor U. If we collect the data of the monofactorial segregation of this point from Table XIV we obtain 310 D and 116 d in the total of 426 flowers, in which we should expect 319.5 D and 106.5 d, respectively.

With these results we can safely recognize the countenance of the D, d allelomorphs in the present cases. In Table XV I collected the F_4 data confirming the previous observation.

From the foregoing description we recognize the three pairs of factors which determine the color variation exhibited in the hybrid progeny. Now let us present the F_2 data showing the triple segregation for the flower color in Table XVI.

TABLE XV. The F_4 data showing the behavior of the factor d.

Character of F ₃	Pedigree number of F ₃	Number of F ₄ pedigree	Red flower	Intense- red flower	Pink flower	Intense- pink flower	Total	Genetic compo- sition
	30, 35	2	66				66	SSUUDD
	30, 35 Expected	4	36 36.75	13 12.25		_	49 49	
Red flower	34, 35 Expected	2	36 38.25		$\frac{15}{12.75}$		51 51	SsUUDD
	35 Expected	2	30 30.70	15 13.55	$\frac{14}{13.55}$	0 1.20	59 59	
	x2 =	1.386	P = 0.71	3				
Intense-red flower	9, 30, 34, 35	4	VIII	66		Davis and S	c 6	SSUUdd
Pink flower	14, 72	4			45	_	45	ssUUDD
Intense-pink flower	14, 72	2	_			29	29	ssUUdd

The F_2 data of the cross, intense-red \times white, showing the segregation of flower color.

TABLE XVI.

Red Inter	_	Spotted	D. 1	Intense-			Total
,	er flower	flower	Pink flower	pink flower	Shaded flower	White flower	
5 4	57	19	11	0	18	19	153
5 4	23	2	5	0	10	4	53
9 4	36	10	1	0	9	6	75
9 12	116	31	17	0	37	29	281 281
	5 4 9 4 9 12	5 4 23 9 4 36 9 12 116	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 4 23 2 5 9 4 36 10 1 9 12 116 31 17	5 4 23 2 5 0 9 4 36 10 1 0 9 12 116 31 17 0	5 4 23 2 5 0 10 9 4 36 10 1 0 9 9 12 116 31 17 0 37	5 4 23 2 5 0 10 4 9 4 36 10 1 0 9 6 9 12 116 31 17 0 37 29

 $x^2 = 20.250$ P = 0.005

The F_2 data shown above are not simple because of the interaction of the factors and of linkage. The genetic constitution of the white-flowered parents is considered to be ssuuDD, while their partners, intense-red flowers, have the SSUUdd-constitution. On selfing the triply heterozygous F_1 hybrids we should expect the following segregation (see Table XVII), if the gametic ratio of present linkage is applied to be 1:2.5, which quite fairly satisfied the actual data as will be seen in Tables XIV and XV.

Table XVII. The theoretical F_2 segregation corresponded to the actual data shown in Table XVI.

Genoty	vpe	Phenot	уре	0.1
Constitution	Ratio	Flower color	Ratio	Color series
SSUUDD	1.00			
\mathcal{S}_8UUDD	5.00	Red	25.50	
.~~SSUUDd	5.00		2000	
SsUUDd	14,50			
SSUUdd	6.25	-		
SsUUdd	5.00	Intense-red	11.25	
SSUuDD	2.00			
SSUuDd	10.00			Intense-colored
SSUuDd	10.00	7.2		series
SsUuDd	29.00	Dilute-red	73.50	(Colored stem)
SSUudd	12.50			(Cososed Stom)
SsUudd	10.00			*25
SSuuDD	1.00		-	
$\mathcal{S}suuDD$	5.00			and the second
SSuuDd	5.00	g		
SsunDd	14.50	Spotted	36.75	
SSuudd	6.25		The state of the s	
Ssuudd	5.00			
ss $UUDD$	6.25	***		3
ssUUDd	5.00	Pink	11.25	
ss $UUdd$	1.00	Intense-pink	1.00	Dilute-colored
ss $UuDD$	12.50			series
ssUuDd	10.00	Shaded	24.50	(Faintly colored
ss Uudd	2.00			stem)
ssuu DD	6.25			
ssuuDd	5.00	White	12.25	9
ssuudd	1.00			

The expected number shown in Table XVI is calculated on the basis of the theoretical ratio above represented, but the value of P is very low.

The breeding aspect of these segregating flowers was partly described in the former pages and we will take up those of which results are not yet stated. As will be seen from Table XVII, the dilute-red flowers invariably

carry the factor S in the simplex or duplex constitution and the simplex U, but cannot say without breeding examination whether the flowers have the factor D or d. So the F_3 results of the intense-red F_2 flowers are not simple in the segregating forms owing to their various composition. In Table XVIII I collected these data.

 $\label{eq:table_XVIII.} The \ F_3 \ data \ of the \ dilute-red \ F_2 \ flowers.$

AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	Sisting the statement of the		CONTRACTOR OF THE STREET, STRE		CONTRACTOR CONTRACTOR		A CONTRACTOR OF THE PARTY OF TH	~		
Pedigree	In		d stem)		(F	intly co	ored seri		Total	Genetic
number	Red flower	Intense- red flower	Dilute- red flower	Spotted flower	Pink flower	Intense- pink flower	Shaded flower	White flower	Loui	compo- sition
69 93 96 112 Total Expected	16 2 1 1 20 24	X2 = 2.6	30 18 5 3 56 48	13 3 1 4 20 24 P=0	271			 	58 23 7 8 96 96	SSUuDD (or SSUuDd)
5 20 26 40 59 78 83 100 103 Total Expected	6 4 1 12 4 0 5 2 2 36 41.625	X2 = 3.0	11 9 1 37 7 4 6 1 9 85 83,25	6 2 2 18 5 6 4 2 5 5 4 4 2 4 1.625 P=0			2 4 0 5 3 1 4 2 4 25 27.75	2 1 0 4 5 1 0 1 0 14 13,875	29 21 5 78 26 13 21 8 21 222 222	SsUuDD (or SsUuDd)
6 42 77 101 Total Expected	Annual Comments	$ \begin{array}{c} 4 \\ 19 \\ 17 \\ 4 \\ 44 \\ 48.75 \end{array} $ $ \chi^2 = 0.6 $	8 33 53 7 101 97.50	5 15 27 3 50 48.75 P=0	- - - - - - - - - - - - - - - - - - -				17 67 97 14 195 195	SSUudd
3 9 17 Total Expected		1 8 9 18 19.125 *2=3.0		3 14 6 23 19.125 P=0		0 1? 2? 3? 6.375	2 3 6 11 12.75	0 3 3 6 6,375	12 46 44 102 102	SsUudd
36 50 68 70 Total Expected	17 20 15 7 59 45.19	$ \begin{array}{c} 3 \\ 6 \\ 4 \\ 1 \\ 14 \\ 15.09 \end{array} $ $ \begin{array}{c} 2 \\ 2 \\ 3 \\ 4 \\ 2 \\ 3 \\ 4 \\ 3 \\ 4 \\ 4 \\ 3 \\ 4 \\ 4 \\ 5 \\ 4 \\ 4 \\ 5 \\ 6 \\ 4 \\ 6 \\ 7 \\ 7 \\ 8 \\ 7 \\ 8 \\ 7 \\ 8 \\ 7 \\ 8 \\ 7 \\ 8 \\ 7 \\ 8 \\ 7 \\ 8 \\ 7 \\ 8 \\ 7 \\ 8 \\ 7 \\ 8 \\ 7 \\ 8 \\ $		10 21 11 3 45 60.25 P=0	.043	and			62 90 64 25 241 241	SSUuDd

TABLE XVIII. (continued)

Pedigree		tense-col (Colored	d stem)		(Fa		ored seri blored ste			Genetic compo- sition
number	Red flower	Intense- red flower	Dilute- red flower	Spotted flower	Pink flower	Intense- pink flower	Shaded flower	White flower	Total	
10	9	1	21	7	4	0	8	4	54	
18	14	6	36	23	5	0	9	4	97	
34	9	6	32	7	1	1	8	7	71	
35	18	6	20	23	8	1	8	5	89	
38	4	1	11	8	1	0	1	1	27	
39	2	2	11	6	2	0	4 5	3	30	
47	6	2	26	10	5	0		4	58	
54	32	9	107	33	14	3	32	22	252	
61	12	3	13	11	5	1	10	2	57	SsUuDd
62	2	1	6	2	1	0	1	0	13	
63	11	5	25	11	11	1	8	7	79	, .
94	1	1	11	3	0	0	5	2	23	
98	2	2	9	3	2	0	4	0	22	-
109	2	2	6	- 2	1	0	2	1	16	
Total	124	47	3 3 4	149	60	7	105	62	888	
Expected	115.53	50.97	333.00	166.50	50,97	4.53	111.00	55.50	888	
		$\chi_{2} = 6.6$	83	P=0	.464					
81	2	0	4	2	0	2	3	2	15	SsUuDd

The triply heterozygous F_3 pedigrees displayed linkage segregation between the factors, s and d, as will be seen in the last group of segregating forms. To obtain ample data for linkage in question I collected all the results available in my crossing experiments in Table XIX.

Table XIX. The available data for the examination of linkage between the factors s and d.

Generation	SD	Sd	sD	sd	Total
$\mathbf{F_2}$	47	10	17	0	74*
$\mathbf{F_3}$	{ 124 106	47 48	6 0 47	7	238* 205
$\mathbf{F_4}$	30	15	14	0	59
Total	307	120	138	11	576
Expected	299,755	132.245	132,245	11.755	576

 $[\]chi^2 = 1.608$ P = 0.662

With this table we can obtain about a 1:2.5 gametic ratio, or, in other words the crossing over between the factors s and d is 28.57 per cent, or nearly 30 per cent.

^{*} These pedigrees made segregation as to the *Uu*-allelomorphs, but I omitted the segregating numbers of the dilute-red, spotted, shaded and white flowers from this table.

In Table XVIII, fifteen pedigrees making trifactorial segregation comprise repulsion data with one exception. No. 81 is this pedigree, and probably it may be the one making coupling segregation, though the observed number is not sufficient to convince us. As the linkage is not very strong, we should naturally expect some occurrences of coupling segregation, contrasted phenomenon of repulsion.

The spotted flowers appearing in the hybrid progeny were composed of those having intense spots on the rays and those having dilute spots, their intensity varying to some extent, including the very faintly colored ones with almost white flowers together, but I have observed no plants bearing only white flowers which carry the factor S. Roughly speaking, the dilute spotted flowers act as dominant over the intense ones, but their exact nature cannot be detected owing to their considerable variation.

Now let us describe the F_3 results of the shaded F_2 flowers. On selfing fifteen plants I recorded their F_3 , which are indicated in Table XX.

 $\label{eq:TABLE XX.}$ The F $_3$ data of the shaded F $_2$ flowers.

Pedigree number	Pink flower	Intense-pink flower	Shaded flower	White flower	Total	Genetic composition
15 23 28 37 45 46 90 107 Total Expected	1 19 12 1 3 8 2 1 47		1 26 26 9 14 27 6 8 117	3 9 21 1 6 10 1 3 54	5 54 59 11 23 45 9 12 218	ssUuDD (or ssUuDd)
8 49 53 72 80 84 108 Total Expected	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 2 4 1 1 1 5 16 18.25	=0.458 32 27 32 4 10 11 18 134 146	16 14 17 5 12 6 18 88 73	57 56 66 14 28 26 45 292	ssUuDd

Thus progenies of fifteen plants came under two grouping segregations, the one in which pink, shaded and white flowers appeared in the ratio of 1:2:1, the other in which pink, intense-pink, shaded and white flowers

occurred in 3:1:8:4, a modified dihybrid ratio. Theoretically speaking, the shaded F_2 flowers should be composed of three genotypes, ssUuDD, ssUuDd and ssUudd, as will be seen in Table XVII. Among them, I examined no cases last-cited, in which we should expect the segregation of three flowers, intense-pink, shaded and white, in the ratio of 1:2:1. Owing to linkage between the factors s and d the numerical contents among the shaded F_2 flowers are much influenced and theoretically we should have infrequent chances of obtaining the shaded flowers carrying such a genotype.

Similar results were repeatedly obtained from the F_4 data, as indicated in Table XXI, though its contents are meagre.

 $\label{eq:table_XXI} The \ F_4 \ data \ of the shaded \ F_3 \ flowers.$

Pedigree number of F_3	Number of pedigree	Pink flower	Intense- pink flower	Shaded flower	White flower	Total	Genetic composition
	1 Expected	11 7.69	$\frac{3}{2.56}$	$\frac{22}{20.50}$	5 10.25	41 41	ss $UuDd$
72		X 2	=4.299	P = 0.2	35		
	1 Expected	$\frac{4}{3.75}$	tioner%	8 7.50	3 3. 75	15 15	ssUuDD?
		χz	=0.200	P = 0.9	21		

The factor hypothesis above postulated fairly accords with the observed results, as will be seen by the above statements. In Table XXII, the linked segregation is confirmed by the numerical comparison of the genotypical contents of F_2 .

TABLE XXII.

A comparison between the theoretical and actual F₂ genotypes, confirming linkage between s and d.

Genotype	Observed	Expected
$SSDD \\ SSDd$	3 11} 3*	1.67 8 37
SSdd	5	10.46
$SsDD \ SsDd$	$\binom{5}{23}$ 5*	8.37 24.27
Ssdd	4	8.37
$rac{ssDD}{ssDd}$	⁸ / ₁₀ } 5*	10.46 8.37
88dd	0	1.67
Total	82	82.01

^{*} The genotypes are obscure owing to their insufficient number in F3

Table XXIII. The theoretical F_2 segregation in the cross W. S. $(rrSSUUdd) \times W$. D. (RRssuuDD).

	Intense-colored seri	ies (colored stem)				White flowers with green stem		
Intense-red flower	Red flower	Dilute-red flower	Spotted flower	Intense-pink flower	Pink flower	Shaded flower	White flower	White flower
6.25 RRSSUUdd	1.00 RRSSUUDD	2.00 RRSSUuDD	1.00 RRSSuuDD	1.00 RRssUUdd	6.25 RRssUUDD	12 50 RRssUuDD	6.25 RRssuuDD	6.25 rrSSUUdd
		4.00 RrSSUuDD	2.00 RrSSuuDD		· [- 25.00 Rrss $UuDD$	12.50 RrssuuDD	5.00 rrSsUUdd
5.00~RRS sUUdd	5.00 RRSsUUDD	10.00 RRSsUuDD	5.00 RRSsuuDD		5.00 RRssUUDd	10.00 RRssUuDd	5.00 RRssuuDd	1.00 rrSSUUDD
		20.00 RrSsUuDD	10.00 RrSsuuDD			20.00 Rrss UuDd	10.00 Rrssuudd	5.00 rrSsUUDD
	5.00 RRSSUUDd	10.00 RRSSUuDd	5.00 RRSSuuDd		-→2.00 RrssUUdd	2.00 RRssUudd	1.00 RRssuudd	5.00 rrSSUUDd
		20.00 RrSSUuDd	10.00 RrSSuuDd			4.00 RrssUudd	2.00 Rrssuudd	14.50 rrSsUUDd
	14.50 RRSsUUDd	29.00 RRSsUuDd	14.50 RRSsuuDd			\rightarrow 12.50 RrssUUDD		2.00 rrSSUuDD
		58.00 RrSsUuDd	29.00 RrSsuuDd].	\longrightarrow 10.00 $RrssUUDd$		10.00 rrSsUuDD
	→12 50 RrSSUUdd	12.50 RRSSUudd	6.25 RRSSuudd					10.00 rrSSUuDd
<u> </u>	\longrightarrow 10.00 RrSs UUdd	25.00 RrSSUudd	12.50 RrSSuudd					29.00 rrSsUuDd
		10.00 RRSsUudd	5.00 RRSsuudd					12.50 rrSSUudd
		20.00 RrSsUudd	10.00 RrSswudd					10.00 rrSsUudd
		2.00 RrSSUUDD						1.00 rrSSuuDD
		\longrightarrow 10.00 RrSsUUDD						5.00 rrSsuuDD
		\longrightarrow 10.00 RrSSUUDd						5.00 rrSSrrDd
		\longrightarrow 20.00 RrSsUUDd						14.50 rrSsuuDd
								6.25 rrSSuudd
								5.00 rrSsuudd
								$1.00\ rrssUUdd$
								6.25 rrssUUDD
								5.00 rrssUUDd
								12.50 rrssUuDD
								10.00 rrssUuDd
								2.00 rrssUudd
								6.25 rrssuuDD
								5.00 rrssuuDd
			,					1.00 rrssuudd
11.25	48.00	271.50	110 25	1.00	13.25	96.00	36.75	196.00

The one indicated with an arrow changes the flower color by its heterozygous Rr-constitution.

The F_2 plants, the subsequent generation of which was examined, were 112 in number, but I have shown the genotypes of 85 plants with the omission of those which bore spotted and white flowers, because of the fact that we could not know their constitution as to the D, d allelomorphs with inbreeding experiments. In the table the numerals asterisked show the ones of which the segregating types are not clear owing to their insufficient number in F_3 . Under such circumstances, we cannot make exact comparison between observed and theoretical numbers, but a glance at the table will show considerable agreement.

THE RESULT OF W. S. \times W. D. From the knowledge gained by the hybridization experiments above shown we can consider the genetic composition of the parental flowers of this crossing; namely, W. S.....rrSSUUdd, and W. D....RRssuuDD. If this is the case the F_1 flowers should be dilute red in color by their quadruple heterozygous constitution, and in F_2 we will have the segregates as shown in Table XXIII.

In consideration of Table XXIII, the linked assortment occuring between the factors s and d and the intermediate expression of the factor r in its heterozygosity made it somewhat complex in giving an unfamiliar ratio. I postulate the effect of heterozygotic r to reduce the intensity of the flower color in such a way; namely, intense-red, red, intense-pink and pink into red, dilute-red, pink and shaded, respectively. Actually the theoretical number calculated on the basis of this expectation is nearly in accordance with observation, as will be found in Table XXIV.

TABLE XXIV.

The F₂ data of the cross W. S. × W. D., showing the segregation of flower color.

	Red flower	Intense- red flower	Dilute- red flower	Spotted flower	Pink flower	Intense- pink flower	Shaded flower	White flower (f.c.s.)	White flower (g. s.)	Total
Observed	24	2	108	41	10	0	31	12	81	309
Expected	18.92	4,43	107.01	43.45	5.22	0.39	37.84	14.49	77.25	30 9

 $x^2 = 9.461$ P = 0.307

Although the final decision may require the examination of F_3 we can say that the above hypothesis is probably correct,

Feathered Corolla.

The double flower of *Pharbitis purpurea* is due to the feathering of the corolla (v. Pl. VIII). The doubling of the flower produces an irregularly split

corolla with some petalous filaments, which resembles the "Shishi" flower of the Japanses moring glory. The "Shishi" flower usually contains abortive sexual organs and produces no seeds, but the feathered flower of *Ph. purpurea* bears normal pistil and stamens, and produces good seeds. The degree of feathering, however, is very fluctuating, and even on one and the same individual it varies considerably, frequently flowers with apparently single corollas can be found amongst them. The extremely developed flowers have many petaloid "skirts" and are irregularly split. Generally speaking, the stems showing vigorous growth bear less-feathered flowers compared with those on languishing stems, so from the observation of young plants one cannot always predict with certainty that they will produce double flowers. In the following, I will mention the genetic behavior of the feathered doubles with the data gained in my crossing experiments.

The F_1 plants obtained by the hybridization of the double flowers with the singles bore invariably flowers with feathered tubes,² and in F_2 they gave the data indicated in Table XXV.

TABLE XXV.

The F₂ data showing the segregation of double and single flowers.

Cross	Double flower	Single flower	Total	
R'. S.×W. D.	103	50	153	
W. D.×R'. S.	39	14	53	
W. D.×R. S.	58	17	75	
W. S. \times W. D.	129	57	186	
W. D. \times W. S.	98	25	123	
Total	427	163	590	
Expected	442.5	147.5	590	

The segregation occurred in a 3:1 ratio, indicating one-factor difference between two flower forms in their genotypes.³ Of these F_2 segregates, I made the F_3 examination in raising the progenies of 112 F_2 plants which consisted of 69 double and 43 single flowers. Table XXVI summarizes their F_3 data.

^{1.} BARKER's conclusion was "feathering of the corolla is a Mendelian character dominant over its absence", but his segregating data are not sufficient.

^{2.} The degree of feathering is generally imperfect compared with that exhibited by the parental double.

^{3.} In some crosses, extremely developed double flowers of somewhat complicated types appeared, but I leaved their study for a future opportunity.

TABLE XXVI.

The F_a data of the cross R'. S.×W. D., showing the inheritance of double flower.

Character of F ₂	Number of pedigree	Double flower	Single flower	Total	
Double flower	1	14		14	
	13 Expected	142 141.75	47 47.25	189 189	
Single flower	43		1398	1398	

The breeding aspect of 55 double-flowered pedigrees, which are not contained here, will be mentioned in the text.

Single flowers bred always true to the type, while the doubles gave both true-breeding and segregating progenies. The main part of the F_3 offspring was left in the field without the later management in twinning about the vines after their early record was taken, so I could not obtain their precise data on the segregation of double flowers. Table XXVI does not include the results of 55 double-flowered pedigrees because of insufficient discrimination. In spite of this their record is not useless when we collect the data as to the numerical contents of homozygotic and heterozygotic F_2 doubles. Of 69 F_2 doubles those which gave progenies consisting all of double flowers were 17 in number, while the others, 52, produced segregating pedigrees as to the flower type, where we expect 23 of the former and 46 of the latter. Table XXVII includes the F_4 data in regard to the flower type.

TABLE XXVII. The F_4 data of the cross R'. S.×W. D., showing the inheritance of flower type.

Character of F ₃	Pedigree number of F ₂	Number of pedigree	Double flower	Single flower	Total
Double flower	9, 72	7	141		141
	9, 14 Expected	3	23 26,25	12 8.75	3 5 35
Single flower	14, 30, 34, 35	18		331	331

The figures contained in the above table confirm the results gained in the previous generation, indicating the simple dominancy of the feathered corolla to the single condition. In the Japanese morning glory, there are several forms of double flowers, but no dominant ones¹ are found, even the "Shishi" flower² itself, which is due to feathering of the corolla.

As stated before I found a case of linkage between the factors s and d, but no remarkable dependent relation seems to exist between the doubleness and flower color in their segregation, as will be seen in Table XXVIII, in which I collect the F_2 data obtained from the cross R'. S. \times W. D. and the like.

Table XXVIII. The F_2 data indicating the segregating aspect of the doubleness and flower color.

	Colored stem				Faintly colored stem				Green stem		
Cross	Character	Red flower	Intense- red flower	Dilute- red flower	Spotted flower	Pink flower	Intense- pink flower	Shaded	White flower	White flower	Total
R′.S. × W,D.	{Double Single	14 11	3	35 22	17 2	8 3	0	14 4	12 7		103 50
$W.D, \times R'.S.$	{Double Single	3 2	3 1	16 7	2 0	4	0	8 2	3 1	_	39 14
W.D. \times R.S.	{Double {Single	8 1	3 1	24 12	9	1 0	0	8 1	5 1	_	58 17
Total	{Double Single	25 14	9 3	75 41	28 3	13 4	0	3 0 7	20 9	_	200 81
$W.S. \times W.D.$	{Double Single	6 7	2 0	44 19	21 6	2 2	0	14 7	5 2	35 14	129 57
$W.D. \times W.S.$	{Double Single	9 2	0	3 7 8	9 5	$\frac{6}{0}$	0	$\frac{7}{3}$	5 0	25 7	98 25
Total	{Double Single	15 9	2 0	81 27	30 11	8 2	0	21 10	10 2	60 21	22 7 8 2

Seed Color.

The seed color of the common strains is black, but W. D., a white-flowered double, produces whitish or tan seeds. The F_1 plants obtained by the cross of black-seeded with tan-seeded produce black seeds, showing the recessiveness of the tan color.³ In F_2 the segregation occurs in a simple ratio

^{1.} cf. Miyake, K. and Imai, Y.—On the double flowers of the Japanese morning glory. Journ. Genetics. In press.

^{2.} cf. MIYAKE, K. and IMAI, Y.—On a monstrous flower and its linkage in the Japanese morning glory. Journ. Genetics. 16:63-76. 1925.

^{3.} Barker also gained the result showing "black is the dominant color" in his experiments with black and tan seeds.

and in the subsequent generations the inheritance of seed color follows quite simple Mendelian expectations. So the diversity of the seed color of black and tan lies in one factor difference. The seed color, however, is accompanied by the stem color, or, more particularly, the SS- or Ss-plants always produce black seeds, while ss-ones tan seeds. Although I did not examine the seed color of all the hybrid progeny it is evident that the black and tan color is due to the pleiotrophic expression of the S, s allelomorphs. With the Japanese morning glory some investigators made their genetic experiments on the seed color, among which we can cite striped and white seeds, which are due to pleiotrophy of the respective factors for the variegated leaf and a certain white flower.

Opportunity is taken at this point to express my hearty thanks to Professor K. MIYAKE for his helpful suggestions, and also to Mr. K. HASHIMOTO for his encouraging interest in the progress of my investigation.

Summary.

1. The three types of stem color are manifested by different combinations of the S, s and R, r pairs of allelomorphs, which, however, also affect the flower color. The respective genotypes of three stem varieties are:

Colored stem		٠,,,			٠.,		 	RS
Faintly colored st	em	•••	•••	• • • •	•••	•••	 •••	Rs
Green stem · · · ·	•••						 	rS. rs

- 2. The factors determining the flower color in my crossing experiments are:
- S, s—The allelomorphs give pleiotrophic manifestation in the color of stem and flower. The factor S makes the flower color more intense and its recessive gives a contrary result, producing two series of flower color groups, intense and dilute.
- R, r—The recessive factor r results in a green-stemmed white flower in its double doses. In the heterozygous state the flower color is affected when the plants carry the UU-factors, displaying a somewhat intermediate condition.

^{1.} MIYAKE, K. and IMAI, Y.—Genetic experiments with morning glories. I. Bot. Magazine, Tokyo. 34:1-26. 1920. (In Japanese.) MIYAZAWA, B.—Genetic studies on the seed color of the Japanese Convolvulus. Jap. Journ. Genetics. 2-1:1-11. 1923. (In Japanese.) IMAI, Y.—A genetic analysis of white-margined flowers in the Japanese morning glory. Genetics. In press.

^{2.} In the consideration of the genetic composition of the white-flowered strain bearing white seeds, MIYAZAWA, however, postulated two different factors, one for white flower and the other for white seed, and concluded that these two factors completely or highly link together in inheritance.

- U, u-U is a factor for color extension of the corolla. The heterozygous condition exhibits approximately an intermediate expression between the UU- and uu-conditions.
- D, d—D is a diluting factor. The detection of the factor, however, can be made outwardly in the UU-plants only.

These four pairs of allelomorphs result in following flower color series by their various combinations:

,	· · · · · · · · · · · · · · · · · · ·	
	(1) Intense-red SSRRUUdd, SsRRUUdd	
	(2) Red	l,
stem	$\begin{cases} SSRRuuDD, \ SsRRUudd, \ SSRRUuDd, \ SsRRUuDd, \\ SSRRUudd, \ SsRrUuDd, \ SsRrUUDD, \\ SSRrUUDd, \ SSRrUuDd, \ SSRrUuDd, \ SSRrUuDd, \ SSRrUuDd, \\ SSRrUuDd, \ SSRrUuDd, \ SSRrUuDd, \ SSRrUuDd, \\ SSRrUuDd, \ SSRrUuDd, \ SSRrUuDd, \ SSRrUuDd, \ SSRrUuDd, \\ SSRrUuDd, \ SS$	
	(4) Spotted	
	(5) Intense-pink ssRRUUdd	
	(6) Pink ssRRUUDD, ssRRUUDd, ssRrUUdd	
Faintly colored	$\begin{cases} ssRRUuDD, ssRRUuDd, ssRRUudd, ssRrUUDD, \\ ssRrUUDd, ssRrUuDD, ssRrUuDd, ssRrUudd \end{cases}$	
stem ((8) White	
	(The white flower with faintly colored stem is produced by the factor inte	r -
	action of two recessive factors, s and u, in their double doses)	
Green stem	$ \{ (9) \text{ White } \dots \} \begin{cases} \text{All combinations above cited with no dominant factor} \\ \text{to the } R, \ r \ \text{allelomorphs}. \end{cases} $	as

- 3. Linkage with 1:2.5 gametic ratio occurs between s and d.
- 4. Feathered double behaves as a simple dominant over the singleness.
- 5. Almost free combinations take place between flower color and doubleness.
- 6. Tan seed is transmitted as a simple recessive to the black, and these characters are due to pleiotrophic manifestation of the S, s allelomorphs.

EXPLANATION OF PLATE VIII.

- Fig. 1. White flower with faintly colored stem (W. D.).
- Fig. 2. Intense-red flower (R'. S.).
- Fig. 3. Dilute-red F₁ flower obtained by the cross of W. D. with R'. S.
- Fig. 4. Intense-red flower. Figs. 4-12 are the representatives of various F₂ segregates.
- Fig. 5. Red flower.
- Fig. 6. Dilute-red flower.
- Fig. 7. Intense-pink flower.
- Fig. 8. Pink flower.
- Fig. 9. Shaded flower.
- Fig. 10. Spotted flower.
- Fig. 11. Faintly spotted flower.
- Fig. 12 White flower.

